在平面直角坐标系中,A(1,0),B(1,3),C(0,3),将矩形OABC沿对角线AC对折,点B落在点D的位置,AD交y轴于E点,求点D的坐标.)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:20:33
在平面直角坐标系中,A(1,0),B(1,3),C(0,3),将矩形OABC沿对角线AC对折,点B落在点D的位置,AD交y轴于E点,求点D的坐标.)
xX[S+*v.sэ,ьxCr~q I,N򰅱k6%6/6I!_OHZ[ePs>>tOMGrG^o˻ߓ)D;j!;ja2"*rlH'&Q9?AF$+3+Nc<* FH+ŌSVhVυߌ[L7;cz~ znv|XΜ֩Z6GY 9} )[hlTS!xag6-Ζv#4SNS/_`ZSktLFg)6\H;tslvbk>"8w9 36O*S鐊в!\:gLwVYZ0[O1! DGYO*ؠGڃ8J>,VH!MSv7 ^yH c k_} @I$LՏ˥}ca%[kff˥)@+g@T2`|v;6N)}cHI+n6;5qf+3}֣"~.j[rUVf@ń՛#T5H{69R$\w\+EG uI\m8\7Yr3dʊ).%BT%fW: NzK7Td:Zpn)-A0IUqt$Uw]ň0R5 *oYAAI xx DhT Ev 2PRA\,"LK#m0 ^5R9Bŀe@fߒvW _C3eb.h)c1pGhsca.4@l%U'_IEsGcrR6OkV `Np*Li=F!~+*P꾳7_{[Op n߿?{?0awg wwޠ{!~BP$xK⢷#ƉbL'}D\=1O'ፉ|<>{b <UzGuۺ'r^O A.p}@_S+M|O5-<,L:@pu72tR?咽AocIO!Ł¾үd+ 2r QM

在平面直角坐标系中,A(1,0),B(1,3),C(0,3),将矩形OABC沿对角线AC对折,点B落在点D的位置,AD交y轴于E点,求点D的坐标.)
在平面直角坐标系中,A(1,0),B(1,3),C(0,3),将矩形OABC沿对角线AC对折,点B落在点D的位置,AD交y轴于E点,求点D的坐标.)

在平面直角坐标系中,A(1,0),B(1,3),C(0,3),将矩形OABC沿对角线AC对折,点B落在点D的位置,AD交y轴于E点,求点D的坐标.)
设D的坐标为(x,y)
∵D点是B点对折后的点
∴AC垂直BD
设AC和BD的垂足为E,E的坐标为((,(y+3)/2)
在三角形ABC中求E点的坐标
得出E点的坐标为(0.9,2.7)
(x+1)/2=0.1
(y+3)/2=2.7
∴x=-0.8,y=2.4

很简单的,设D点坐标为(x,y),首先我们可以写出直线AC的方程,为x+y/3=1,由对称性质可得出,BD的中点一定在直线AC上,而BD的中点坐标为((x+1)/2,(y+3)/2)带入直线AC的方程,化简后得到,3x+y=0,同时,向量BD和向量AC必定垂直,而向量BD=(x-1,y-3)AC=(-1,3),所以BD*AC=0即x-1=3(y-3)化简后得,x+8=3y,将这个式子与3x+y=0...

全部展开

很简单的,设D点坐标为(x,y),首先我们可以写出直线AC的方程,为x+y/3=1,由对称性质可得出,BD的中点一定在直线AC上,而BD的中点坐标为((x+1)/2,(y+3)/2)带入直线AC的方程,化简后得到,3x+y=0,同时,向量BD和向量AC必定垂直,而向量BD=(x-1,y-3)AC=(-1,3),所以BD*AC=0即x-1=3(y-3)化简后得,x+8=3y,将这个式子与3x+y=0联立,解得x= -0.
8,y=2.4,其他方法还有很多,不过这种方法我认为是比较简单的。希望能帮到你

收起

连接BD交AC于F,则AC⊥BD,
△ABC的面积=1/2*AB*BC=1.5,AC=√10,
△ABC的面积=1/2*AC*BF,∴BF=3/√10,∴DF=3/√10,
由折叠知:∠BAC=∠DAC,∵OC∥AB,∴∠OCA=∠BAC
∴∠OCA=∠DAC,设AD交Y轴于M,则CM=AM,高CM=m,则DM=OM=3-m
在RT△DCM中,CM^2=DC...

全部展开

连接BD交AC于F,则AC⊥BD,
△ABC的面积=1/2*AB*BC=1.5,AC=√10,
△ABC的面积=1/2*AC*BF,∴BF=3/√10,∴DF=3/√10,
由折叠知:∠BAC=∠DAC,∵OC∥AB,∴∠OCA=∠BAC
∴∠OCA=∠DAC,设AD交Y轴于M,则CM=AM,高CM=m,则DM=OM=3-m
在RT△DCM中,CM^2=DC^2+DM^2,∴m^2=(6-m)^2+1^2,解得:m=37/12
∴DM=6-m=35/12,△DCM的面积为1/2*DM*DC=35/24
过D作DN⊥Y轴于N,则△DCM的面积为1/2*DN*CM=37/24DN
∴DN=35/37,
过D作DP⊥X轴于P,则AP=1+35/37=72/37
∴DP^2=AD^2-AP^2=9-(72/37)^2=7137/(37^2)
∴DP=√7137/37
∴D(-35/37,√7137/37

收起

答案(-4/5,12/5)分析,此题为翻折问题,要抓住翻折的特性,譬如,翻折过后,那些边的长度是不变的,那些线是垂直的。翻折过后,直线AC与直线BD垂直,就可以求出直线BD的函数式Y=1/3X+8/3(直线AC函数式可求Y=-3x+3,与BD垂直)然后设D点为(x,1/3x+8/3),然后再根据CD的长度=BC长度=1(C点已知),最后求得D点,望采纳...

全部展开

答案(-4/5,12/5)分析,此题为翻折问题,要抓住翻折的特性,譬如,翻折过后,那些边的长度是不变的,那些线是垂直的。翻折过后,直线AC与直线BD垂直,就可以求出直线BD的函数式Y=1/3X+8/3(直线AC函数式可求Y=-3x+3,与BD垂直)然后设D点为(x,1/3x+8/3),然后再根据CD的长度=BC长度=1(C点已知),最后求得D点,望采纳

收起

∵A(1,0),B(1,3),C(0,3),∴AB=OC=3,OA=BC=1
∵四边形OABC是矩形 ∴⊿OAC≌⊿BCA
∵是将矩形OABC沿对角线AC对折,点B落在点D的位置
∴⊿BCA≌⊿DCA ∴⊿OAC≌⊿DCA ∴∠EAC=∠ECA ∴CE=AE
∴OE+AE=OE+CE=OC=3 ∴AE=CE-OE
在Rt⊿O...

全部展开

∵A(1,0),B(1,3),C(0,3),∴AB=OC=3,OA=BC=1
∵四边形OABC是矩形 ∴⊿OAC≌⊿BCA
∵是将矩形OABC沿对角线AC对折,点B落在点D的位置
∴⊿BCA≌⊿DCA ∴⊿OAC≌⊿DCA ∴∠EAC=∠ECA ∴CE=AE
∴OE+AE=OE+CE=OC=3 ∴AE=CE-OE
在Rt⊿OEA中 OE²+OA²=AE²即OE²+1²=﹙3-OE﹚²
解这个方程得OE=4/3 ∴AE=CE=3-OE=5/3
过D作DN⊥X轴于点N ∴DN∥CO 则OE/ND=AE/AD ∴ND=AD·OE/AE=12/5
同理AE/AD=AO/AN ∴AN=OA·AD/AE=9/5 ∴ON=9/5-1=4/5
∴D﹙﹣4/5,12/5﹚

收起

大哥,你也不给个图啥的
叫我怎么答啊

∵A(1,0),B(1,3),C(0,3),∴AB=OC=3,OA=BC=1

∵四边形OABC是矩形     ∴⊿OAC≌⊿BCA

∵是将矩形OABC沿对角线AC对折,点B落在点D的位置

∴⊿BCA≌⊿DCA      ∴⊿OAC≌⊿DCA    ∴∠1=∠2= ∠3(∠2= ∠3根据对称可得~)  ∴CE=AE

∴OE+AE=OE+CE=OC=3    ∴AE=3-OE

在Rt⊿OEA中   OE²+OA²=AE²即OE²+1²=﹙3-OE﹚²     

 解这个方程得OE=4/3     ∴AE=CE=3-OE=5/3

过D作DF⊥X轴   ∴DF∥CO       则OE/DF=AE/AD (由∴⊿OEA与⊿OFA 相似可得   )     

∴DF=AD·OE/AE=12/5

同理AE/AD=AO/AF        ∴AF=OA·AD/AE=9/5         ∴OF=9/5-1=4/5

∴D﹙﹣4/5,12/5﹚

故所求的点D坐标为﹙﹣4/5,12/5﹚

附图~

这么多人都做了 我就算了 肯定凑不到分
看了哈 第二个人的方法是蛮简单- -!

在平面直角坐标系中,A(1,2),B(3,1),点P在 如图,在平面直角坐标系中,a(4,4),b(1,0),c(5,1) 在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0) (2012•南平)在平面直角坐标系中,在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(m,1)(m>0), 一条平面直角坐标系的初三数学题如图,在平面直角坐标系中,点A的坐标是(1,1),对于三角形ABC:设点B在坐标轴上,C(x,0)且x 在平面直角坐标系中,A(1-1),B(-1,4)C(-3,1)求Sabc 在平面直角坐标系xoy中,点A(0,8),点B(6,8) 已知:如图,在直角梯形COAB中,OC‖AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别是已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别是A(8,0),B(8,1 在平面直角坐标系中作以点A(﹣1,0),B(2,0)C(1,3) 在平面直角坐标系中,A(1,0),B(-2,-8),O(0,0)则三角形AOB的面积为 在平面直角坐标系中,若点A(1,3) 点B(1,-1),则AB=( 在平面直角坐标系中,A[-2,0],B[4,-1],C[0,3],求三角形ABC的面积‘‘ 555555 在平面直角坐标系中,已知A(-3,4)B(-1,-2)O(0,0),求三角形ABO的面积 在平面直角坐标系中 o(0,0),a(-1,-2),b(-3,4),求三角形aob的面积 在平面直角坐标系中,已知A(-3,4),B(-1,-2),O(0,0),求三角形AOB的面积, 在平面直角坐标系中,已知A(0,2),C(1,0),AB⊥AC,求点B的坐标. 在平面直角坐标系,xOy中,若A(-2,7),B(1,1),则向量AB= 在平面直角坐标系中A(-3,0),B(-1,2),为o原点,则△AOB的面积为