【急】 求y=log1/2(x^2-5x-6)的单调区间

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 17:52:05
【急】 求y=log1/2(x^2-5x-6)的单调区间
xToo@*&K6kW [("K(ѐ.eBpP`0gD6++xkK7Q瞫&r '#t$_y" ؍1Y*ӋP3f+[_)BJmE '_Pk[fTj͚]  aJ!Xkh_{R|LV$&D6BD_z0׷4/-\zگ\ }o"+PF64eXoU >G|8.,`OX&@<,`Q@ Jq V-TeɃOg(t^l

【急】 求y=log1/2(x^2-5x-6)的单调区间
【急】 求y=log1/2(x^2-5x-6)的单调区间

【急】 求y=log1/2(x^2-5x-6)的单调区间
求y=log‹1/2›(x²-5x-6)的单调区间
定义域:由x²-5x-6=(x+1)(x-6)>0,得定义域为x6.
y=log‹1/2›u,u=x²-5x-6=(x-5/2)²-25/4-6=(x-5/2)²-49/4.
y是关于u的减函数;u是关于x的二次函数,是一条开口朝上的抛物线,其顶点为(5/2,-49/4);
按同增异减原理,当x∈(-∞,-1)时u单调减,故y在此区间内单调增;当x∈(6,+∞)时u单调增,故在此区间内y单调减.
即y=log‹1/2›(x²-5x-6)的单增区间为(-∞,-1);其单减区间为(6,+∞).

f(x)=log1/2(x)在(0,正无穷)单调递减。
k(x)=x^-5x-6在(负无穷,5/2)单调递减;在[5/2,正无穷)单调递增。
根据:减减得增,增减得减。
在(0,5/2)单调递增,在[5/2,正无穷)单调递减。
请对比答案,如有错漏,不吝赐教,望采纳

(x+1)(x-6)>0
x<-1;x>6
y=log1/2[(x+1)(x-6)]
∵x<-1时,(x+1)(x-6)单调递减,
x>6时,(x+1)(x-6)单调递增;
所以
y=log1/2[(x+1)(x-6)]的单调递增区间为(-∞,-1);单调递减区间为(6,+∞)