数列{an}{bn}满足bn=a1+2a2+3a3+…+nan/(1+2+3+…+n),若数列{an}为等差数列,求证;{bn}为等差数列.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:01:17
数列{an}{bn}满足bn=a1+2a2+3a3+…+nan/(1+2+3+…+n),若数列{an}为等差数列,求证;{bn}为等差数列.
xU_OP*M,-[mɨ_Mߖܙјtn8P dġl qSD{)O|Z]} ;]\ǤX[򒃗E38=qe#ݴM=cgޡml`嫖 [7`8YWF{a:6"}|] A6wNJë847I p]xv?i'o~)HG5[ @z:(af"-<ܼH4EM}p C:Ҍ~:Ŕd|Vl-1ÄxEO<@˘{F 1=ܙ6ϓ B $5~hY, ޴֍=gkiJeP(7@X #Hk`n"EH]@Dq`r4ͩ&0?~>{g')ڤMF-|rz_KlK:#wJUǓT8'z389&&*Ӝ=cf'U< -ܠI(`?6)Cخ)i0=wJpuߎN IdP"U|y ?bGқT8p_DvD,oY"e%2][eaH[`F8Pw/XfJl[.WHN[Y ~Ya px6Wә61\^UEQ;  kҩf1oQ]

数列{an}{bn}满足bn=a1+2a2+3a3+…+nan/(1+2+3+…+n),若数列{an}为等差数列,求证;{bn}为等差数列.
数列{an}{bn}满足bn=a1+2a2+3a3+…+nan/(1+2+3+…+n),若数列{an}为等差数列,求证;{bn}为等差数列.

数列{an}{bn}满足bn=a1+2a2+3a3+…+nan/(1+2+3+…+n),若数列{an}为等差数列,求证;{bn}为等差数列.
这个应该不难.
设 an=a1+(n-1)d,其中d为数列{an}的公差,
代入可得
bn=[(a1+2a1+...+na1)+(1*2+2*3+...+(n-1)n)d]/(1+2+...+n) ,
由于 1*2+2*3+.+(n-1)n=(n-1)n(n+1)/3 ,1+2+.+n=n(n+1)/2 ,
因此 bn=[a1*n(n+1)/2+d(n-1)n(n+1)/3]/[n(n+1)/2]=a1+(n-1)*2d/3 ,
所以 {bn}是以 a1 为首项,2d/3 为公差的等差数列 .

还差一问

证:
数列{an}是等差数列,设公差为d。
an=a1+(n-1)d
nan=na1+n(n-1)d
a1+2a2+3a3+...+nan
=(1+2+...+n)a1+[1×2+2×3+...+n(n-1)]d
=n(n+1)a1/2+[(2-1)×2+(3-1)×3+...+(n-1)n]d
=n(n+1)a1/2+[(2²+3...

全部展开

证:
数列{an}是等差数列,设公差为d。
an=a1+(n-1)d
nan=na1+n(n-1)d
a1+2a2+3a3+...+nan
=(1+2+...+n)a1+[1×2+2×3+...+n(n-1)]d
=n(n+1)a1/2+[(2-1)×2+(3-1)×3+...+(n-1)n]d
=n(n+1)a1/2+[(2²+3²+...+n²)-(2+3+...+n)]d
=n(n+1)a1/2+[(1²+2²+3²+...+n²)-(1+2+3+...+n)]d
=n(n+1)a1/2+[n(n+1)(2n+1)/6-n(n+1)/2]d
=[n(n+1)/2][a1+2(n-1)d/3]
=(1+2+3+...+n)[a1+2(n-1)d/3]
bn=(a1+2a2+3a3+...+nan)/(1+2+3+...+n)
=(1+2+3+...+n)[a1+2(n-1)d/3]/(1+2+3+...+n)
=a1+2(n-1)d/3
=a1+(n-1)(2d/3)
b1=a1/1=a1
bn-b(n-1)=[a1+(n-1)(2d/3)]-[a1+(n-2)(2d/3)]=2d/3,为定值。
数列{bn}是以a1为首项,2d/3为公差的等差数列。
注:2d/3就是三分之二d。

收起

可用等差数列定义喔。证明bn-bn_1=定值就ok

这个好证,把an公差d设出来,分母是等差的利用求和公式表达出来,分子可以变成一个关于a1
,n和d的式子,这样bn的通项就出来了 再利用等差数列的性质就可以解出答案

19、已知数列{an},{bn}满足a1=2,2a n=1+a na n+1,bn=an-1(bn不等于0)求证:数列{1/bn}是等差数列,并求数列{an}的通项公式. 已知数列{an}、{bn}满足:a1=1/4,an+bn=1,bn+1=bn/1-an^2 (1)求{an}的通项公式 设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] .设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] 成等比数列,lg[bn],lg[a(n+1)],lg[bn+1]成等差数列,且a1=1,b1=2,a2=3,求通项an、bn. 已知数列{an},{bn}满足a1=2,2an=1+2an*an+1,设{bn}=an-1求数列{1n}为等差数列急!!! 已知数列{an}满足an+Sn=n,数列{bn}满足b1=a1,且bn=an-a(n-1),(n≥2),试求数列{bn}的前n项的和Tn (高二数学)已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an(1)若a1,a3,a4成等比数列,求数列{an}的通项公式(2 【紧急--高一数学】已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an(1)若a1,a3,a4成等比数列,求数列{an}的通项 正项数列an满足:a1=3/2,a(n+1)=3an/2an+3数列bn满足bn·an=3(1-1/2^n),求bn的前n和 已知数列{An}中,a1=3/5,an=2-1/A(n-1)(n>=2)数列{bn}满足bn=1/an-1,求证bn是等差数列求数列{An}中的 数列{an} {bn}满足:a1=0 a2=1 a(n+2)=[an+a(n+1)]/2 bn=a(n+1)-an 求证 bn是等比数列和 bn的通向公式 数列an及正项数列bn满足:a1=0.5,a(n+1)=1除以1+bn,an+bn=1,求bn的通项公式,比较ln(1+bn)与bn的大小 两正数数列{an} {bn}满足:an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列 a1=1 b1=2 a2=3.求{an} {bn}通项公式. 数列an,bn满足a1=b1=1,an+1-an=bn+1/bn=2,则数列ban的前10项和为 设数列{an},{bn}满足a1=1,b1=0且(高二数学,a(n+1)=2an+3bn且b(n+1)=an+2bn.(1)求证:{an+根号3bn}和{an-根号3bn}都是等比数列并求其公比;(2)求{an},{bn}的通项公式(n均为正整数)是(根号3)bn 已知数列an和bn满足a1=2,(an)-1=an[a(n+1)-1],bn=an-1,n属于N*求数列bn的通项公式()中的都为下标 数列{an}{bn}满足an=5an-1 -6bn-1 bn=3an-1 -4bn-1 且a1=a,b1=b求{an}{bn}通项 两个数列{an}和{bn}满足bn=a1+2a2+...+nan/1+2+...+n,求证:若{bn}为等差数列,则数列{an}也是等差数列?能看懂的 数列{an}{bn}满足bn=a1+2a2+3a3+…+nan/(1+2+3+…+n),若数列{an}为等差数列,求证;{bn}为等差数列.