0<a<π/4.sin(π/4-a)=5/13.求cos2a/cos(π/4+a)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:16:42
x)3xgN"o7+ 1t5kohlcSr~Q>i'j$铧QΆ;v)[9FFF0k"ZHUBEjAFc0E^d.d(@)g
Ov/U@6QǬhC]jʆ0X0p,
dkd$m@! _
0<a<π/4.sin(π/4-a)=5/13.求cos2a/cos(π/4+a)
0<a<π/4.sin(π/4-a)=5/13.求cos2a/cos(π/4+a)
0<a<π/4.sin(π/4-a)=5/13.求cos2a/cos(π/4+a)
cos2a/cos(π/4+a)
=sin(π/2+2a)/cos(π/4+a)
=2sin(π/4+a)*cos(π/4+a)/cos(π/4+a)
=2sin(π/4+a)
=2cos[π/2-(π/4+a)]
=2cos(π/4-a)
因为 0<a<π/4, 0<π/4-a<π/4
所以 2cos(π/4-a)=2√[1-sin²(π/4-a)]=2√(1-25/169)=2*12/13=24/13