数列{an}中a1=2,an+1=2^nan (1)求证:a1/2,a2,a3成等比数列(2)求{an}的通项公式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 19:07:16
xj0_EjC&/j,YŴc)!gj i8L~L!k@~ݏ[[XQFt,g绺zOFMމ4]"ض'B݄(.Ŏi
GMzuk/=LTؚ𢘎BjGe,R2zCp鳘2H;>r~/Us
数列{an}中a1=2,an+1=2^nan (1)求证:a1/2,a2,a3成等比数列(2)求{an}的通项公式
数列{an}中a1=2,an+1=2^nan (1)求证:a1/2,a2,a3成等比数列(2)求{an}的通项公式
数列{an}中a1=2,an+1=2^nan (1)求证:a1/2,a2,a3成等比数列(2)求{an}的通项公式
a(n+1) =2^n.an
a1/2 = 1
a2 = 2^1.a1 = 4
a3 = 2^2 .a2 = 16
=>a1/2,a2,a3成等比数列
a(n+1) =2^n.an
loga(n+1) = logan + n
loga(n+1) - logan = n
logan - loga1 = 1+2+3+...+(n-1)
logan =n(n-1)/2 +1
=(n^2-n+2)/2
an = 2^[(n^2-n+2)/2]