复数z=(a^2-2a)+(a^2-a-2)i对应点在虚轴上,则实数a= ,计算(1-i)/(1+2i)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 14:38:18
复数z=(a^2-2a)+(a^2-a-2)i对应点在虚轴上,则实数a= ,计算(1-i)/(1+2i)
xRnPH"[EOT(e吒@Py ` \_V B]4RVYy̙;gXˤUޞ._TI5 I¨epf?xuϱ6}U+Rw r ԾIi]oC N9x-\&’߆&䬥2mNh$R9RQ*"7u3!݌-9q (OzXJFĹlvӄ41CPEAEYu@x>a%)!X)R#Z M()h4*_jiz3JI\@Sf3b=@.Vw;`jO,3 MN-ݴ%Nr25d݋`6Ci_LLw9,Kd|${W6x|6 >ͪi=*~

复数z=(a^2-2a)+(a^2-a-2)i对应点在虚轴上,则实数a= ,计算(1-i)/(1+2i)
复数z=(a^2-2a)+(a^2-a-2)i对应点在虚轴上,则实数a= ,计算(1-i)/(1+2i)

复数z=(a^2-2a)+(a^2-a-2)i对应点在虚轴上,则实数a= ,计算(1-i)/(1+2i)
1、复数z=(a^2-2a)+(a^2-a-2)i对应点在虚轴上,则
a^2-2a=0且a^2-a-2≠0
a=0或a=2代入a^2-a-2≠0检验
所以a=0
2、(1-i)/(1+2i)=(1-i)(1-2i)/5=-(1+3i)/5

(1)复数z=(a^2-2a)+(a^2-a-2)i对应点在虚轴上,则实部a²-2a=0且虚部a²-a-2≠0.
解得:a=0
(2)(1+i)/(1+2i)=(1+i)(1-2i)/(1-2i)/(1+2i)=(3-i)/5

复数z=(a^2-2a)+(a^2-a-2)i对应点在虚轴上
说明实部a^2-2a=0
(a-2)a=0
a=0或2
(1-i)/(1+2i)
=(1-i)(1-2i)/5
=(-1-3i)/5
如果认为讲解不够清楚,请追问。
祝:学习进步!第二问不是个具体的数么?(-1-3i)/5这就是一个具体的数啊,只不过是复数而已,但是它的确是...

全部展开

复数z=(a^2-2a)+(a^2-a-2)i对应点在虚轴上
说明实部a^2-2a=0
(a-2)a=0
a=0或2
(1-i)/(1+2i)
=(1-i)(1-2i)/5
=(-1-3i)/5
如果认为讲解不够清楚,请追问。
祝:学习进步!

收起