乘方是什么幂是什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 03:18:28
乘方是什么幂是什么
xXRI=/}!E ?@>[}Gs#061cnɺ[< {Z00< ~}+~*}ſN%-!ճm)غx.χ~&?_ m=wUL l4_^vԌ9K-_Qy-K7oNDuE0D&C#'T ,JAI9La#Z.+QYTt;^s^-0 bT:HՊ`#TfN^C(nAR_Ěbg^)> k$*d`=RU $܎jhUfKOuvyɓ'wAB,PlQ27O-MwqREo^?=K"o M 8joPpS^:Mdp -U ٵv7;G{wb鰁Xu8 扊Ix4wѝ{HWfpXEHa^*G˂Zȏ;Wے5$~ H,aˊ M>`{#LHl]̍;.uҩ〞-:D;;HE'>sنs[?|<:J4b4dhu@Y\ve"DY'8op `r헊s/3t JRssnG `YB=\ckYnbnѣG.jVz.=_#;Ts2n^蒚 .x\o'Xvz3 eVgD HK7Ѫ7 C!6pJ(TOcZR{E΋GeeM`T4Q ":C^WdCkJ-Rc}}Jj^z8l Q"M 7n{)tRPmOi'xQ)k:)S1K$[xIh$Uc(]VQI y \X b#e.4 6dWžRΕ|b zH^~>I4ޱns$ڿZcrɸ) oPzd`r*vKڻ|_m>9,h y]yrH1 L!ASDE]Ϯ9ׅk1/UH픕˥nJ^RcA/j9wiفQdtQ|U6K]8ܘtw}=6M48F 

乘方是什么幂是什么
乘方是什么
幂是什么

乘方是什么幂是什么
某个数R的n次方,也称某个数R的n次幂,就是n个R相乘,R×R×R.×R,有n个

乘方的概念
一.乘方的意义、各部分名称及读写
  求n个相同乘数乘积的运算叫做乘方。乘方算是一个三级运算。
  在a^n中,相同的乘数a叫做底数,a的个数n叫做指数,乘方运算的结果a^n叫做幂。a^n读作a的n次方,如果把a^n看作乘方的结果,则读作a的n次幂。a的二次方(或a的二次幂)也可以读作a的平方;a的三次方(或a的三次幂)也可以读作a的立方。
  每一个自...

全部展开

乘方的概念
一.乘方的意义、各部分名称及读写
  求n个相同乘数乘积的运算叫做乘方。乘方算是一个三级运算。
  在a^n中,相同的乘数a叫做底数,a的个数n叫做指数,乘方运算的结果a^n叫做幂。a^n读作a的n次方,如果把a^n看作乘方的结果,则读作a的n次幂。a的二次方(或a的二次幂)也可以读作a的平方;a的三次方(或a的三次幂)也可以读作a的立方。
  每一个自然数都可以看作这个数的一次方,也叫作一次幂。如:8可以看作8^1。当指数是1时,通常省略不写。
运算顺序:先算乘方,后算乘除,最后算加减。
1.相同乘数相乘的积用乘方表示
2.根据乘方的意义计算出答案
1)9^4; 2)0^6。
9^4=9×9×9×9=6561
0^6=0×0×0×0×0×0=0
可以看出0^n=0
4.区别易混的概念
 1)8^3与8×3;   2) 5×2与5^2; 3)4×5^2与(4×5)^2。
同底数幂的乘、除法法则
同底数幂的乘法法则:
  同底数幂相乘除,原来的底数作底数,指数的和或差作指数。用字母表示为:
  a^m×a^n=a^(m+n) 或  a^m÷a^n=a^(m-n) (m、n均为自然数)
1)15^2×15^3; 2)3^2×3^4×3^8; 3)5×5^2×5^3×5^4×…×5^90
1)15^2×15^3=15^(2+3)=15^5
2)3^2×3^4×3^8=3^(2+4+8)=3^14
3)5×5^2×5^3×5^4×…×5^90=5^(1+2+3+…+90)=5^4095
幂的乘方法则
  a^m又叫做幂,如果把a^m看作是底数,那么它的n次方就可以表示为(a^m)^n。这就叫做幂的乘方。我们先来计算(a^3)^4。
  把a3看作是底数,根据乘方的意义和同底数的幂的乘法法则可以得出:
  (a^3)^4=a^3×a^3×a^3×a^3=a^(3+3+3+3)=a^(3×4)=a^12  即:(a^3)^4=a^(3×4)
  同样,(a^2)^5=a^2×a^2×a^2×a^2×a^2=a^(2+2+2+2+2)=a^(2×5)=a^10 即:(a^2)^5=a^(2×5)
  由以上例子可知,幂的乘方,底数不变,指数相乘。用字母表示为:(a^m)^n=a^(m×n)
(x^4)^2; (a^2)^4×(a^3)^5
(x^4)^2=x^(4×2)=x^8
(a^2)^4×(a^3)^5=a^(2×4)×a^(3×5)=a^8×a^15=a^(8+15)=a^23
积的乘方
  积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘。用字母表示为:(a×b)^n=a^n×b^n
  这个积的乘方法则也适用于三个以上乘数积的乘方。如:
   (a×b×c)^n=a^n×b^n×c^n
平方差公式
两个数的和乘以这两个数的差,等于这两个数的平方差。用字母表示为:
   (a+b)×(a-b)=a^2-b^2
  这个公式叫做平方差公式。利用这个公式,可以使一些计算变得简便。
例 用简便方法计算104×96。
原式=(100+4)×(100-4)=100^2-42=10000-16=9984
完全平方公式
  两数和(或差)的平方,等于它们的平方的和加上(或者减去)它们的积的2倍。用字母表示为:
   (a+b)^2=a^2+2ab+b^2  (a-b)^2=a^2-2ab+b^2
上面这两个公式叫做完全平方公式。应用完全平方公式,可以使一些乘方计算变得简便。
例 计算下面各题: 1)105^2; 2)196^2。
1)105^2=(100+5)^2=100^2+2×100×5+5^2=10000+1000+25=11025
2)196^2=(200-4)^2=200^2-2×100×4+4^2=40000-800+16=39216
平方数的速算
  有些较特殊的数的平方,掌握规律后,可以使计算速度加快,现介绍如下。
  1.求由n个1组成的数的平方
  我们观察下面的例子。
  1^2=1
  11^2=121
111^2=12321
1111^2=1234321
11111^2=123454321
111111^2=12345654321
……
  由以上例子可以看出这样一个规律;求由n个1组成的数的平方,先由1写到n,再由n写到1,即:
11…1^2=1234…(n-1)n(n-1)…4321
n个1
  注意:其中n只占一个数位,满10应向前进位,当然,这样的速算不宜位数过多。
  2.由n个3组成的数的平方
  我们仍观察具体实例:
  3^2=9
33^2=1089
333^2=110889
3333^2=11108889
33333^2=111108889
  由此可知:
  33…3^2 = 11…11 0 88…88 9
n个3 (n-1)个1 (n-2)个8
  3.个位数字是5的数的平方
  把a看作10的个数,这样个位数字是5的数的平方可以写成;(10a+5)^2的形式。根据完全平方式推导;
  (10a+5)^2=(10a)^2+2×10a×5+5^2
  =100a^2+100a+25
  =100a×(a+1)+25
  =a×(a+1)×100+25
  由此可知:个位数字是5的数的平方,等于去掉个位数字后,所得的数与比这个数大1的数相乘的积,后面再写上25。
例 计算 1)45^2; 2)115^2。
1)原式=4×(4+1)×100+25 2)原式=11×(11+1)×100+25
   =2000+25 =11×12×100+25
   =2025 =13200+25
   =13225
  4.同指数幂的乘法
  a^2×b^2是同指数的幂相乘,可以写成下面形式:
  a^2×b^2=a×a×b×b=(a×b)×(a×b)=(a×b)^2
  由此可知:同指数幂的乘法,等于底数的乘积做底数,指数不变。根据这个法则可以使计算简便。如:  2^2×5^2=(2×5)^2=10^2=100
  2^3×5^3=(2×5)^3=10^3=1000  2^4×5^4=(2×5)^4=10^4=10000
  根据上面算式,可以得出这样一个结论

收起