在 △ABC 所在平面上有一点 P ,满足()向量PA+向量PB+4向量PC=向量AB,则三角形PBC与三角形PAB的面积之比A.1/3 B.1/2 C.3/4 D.2/3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:30:16
xՒn@_elz3.H ~4KmPQD7UHH
"xeW`8T
hw9>r\N?ۮi`nJӳltN{a8`k[w6hӗ&+-
Z^{y8w,;5>~"w.ő K
*8%:JW %ahGJ + 7l}UI|=46Zo[dqp$aqGH\VxB_ 8k"x=T>|FG-!m!D{U ("R\b%Os9uLn@*uqZ@\u@X7b9Kiɂ(Q`Uէ=D
ߐEWtr
n0,u`8Lfryi?ļz
在 △ABC 所在平面上有一点 P ,满足()向量PA+向量PB+4向量PC=向量AB,则三角形PBC与三角形PAB的面积之比A.1/3 B.1/2 C.3/4 D.2/3
在 △ABC 所在平面上有一点 P ,满足()向量PA+向量PB+4向量PC=向量AB,则三角形PBC与三角形PAB的面积之比
A.1/3 B.1/2 C.3/4 D.2/3
在 △ABC 所在平面上有一点 P ,满足()向量PA+向量PB+4向量PC=向量AB,则三角形PBC与三角形PAB的面积之比A.1/3 B.1/2 C.3/4 D.2/3
解答:
∵向量PA+向量PB+4向量PC=向量AB
∴ 向量PA+向量PB+4向量PC=向量PB-向量PA
∴ 2向量PA+4向量PC=0
∴ 向量PA=-2向量PC
∴ 向量AP=2向量PC
如图:
∴ |AP|:|PC|=2:1
∴ 三角形PBC与三角形PAB的面积之比= |PC|:|AP|=1:2=1/2
选B
在△ABC所在平面上有一点P,使得向量PA+PB+PC=AB,求P点位置
在△ABC所在的平面α外有一点P,且PA=PB=PC,则P在α内的射影是△ABC的
在△ABC所在平面上有一点P,满足向量PA+PB+PC=0,则△PBC与△ABC面积之比是想知道如何证出P是重心的
在三角形ABC 所在的平面上有一点P ,向量PA+PB+PC=AB,则三角形PBC 与 三角形ABC的面积之比是多少?
在等腰△ABC中,AB=AC≠BC,它所在的平面上有一点P,使得△PAB,△PBC,△PAC都是等腰三角形,则满足条件的P点共有____个.
在等腰△ABC中,AB=AC≠BC,它所在的平面上有一点P,使得△PAB,△PBC,△PAC都是等腰三角形,则满足条件的P点共有____个.
在△ABC所在的平面上有一点P,满足向量PA+向量PB+向量PC=向量BC,则△PBC与△ABC的面积之比是?
在△ABC所在平面内有一点P满足,向量PA+PB+PC=AB求△ABC与△PAB面积之比
在等腰△ABC中,AB=AC≠BC,它所在的平面上有一点P,使得△PAB,△PBC,△PAC都是等腰三角形,则满足条件的有-
在△ABC所在平面上有一点O,且OA*OB=OB*OC=OC*OA,则点O是△ABC的()心
在△ABC所在的平面内有一点P,如果2倍向量PA+向量PC=向量AB-向量PB,那么△PBC的面积与△ABC的面积之比是...在△ABC所在的平面内有一点P,如果2倍向量PA+向量PC=向量AB-向量PB,那么△PBC的面积与△ABC
1、若P为△ABC所在平面外一点,且PA=PB=PC,求证点P在△ABC所在平面内的射影是△ABC的外心.2、平行四边形ABCD所在平面α外有一点,且PA=PB=PC=PD,求证:点P与平行四边形对角线交点O的连线PO垂直于AB、
在三角形ABC所在平面上有一点P,满足P到三个顶点的向量之和等于向量AB,求三角形PBC与三角形ABC的面积之比
在三角形ABC所在的平面外有一点P,PA=PB,BC垂直于平面PAB,M为PC的中点,且AN=3BN,求证:AB垂直于MNN是AB上一点
在等腰ABC中(AB=AC BC)所在平面上有一点M,使得MAB、MBC、MAC都是等腰三角形,
点P是△ABC所在平面外一点,且点P到△ABC三个顶点距离相等, 则点P在△ABC所在平面上的影射是△ABC的.点P是△ABC所在平面外一点,且点P到△ABC三个顶点距离相等, 则点P在△ABC所在平面上的影射是
在三角形ABC所在的平面上有一点P,满足向量(PA+PB+PC)=向量AB,则三角形PBC与三角形ABC的面积之比是?
在三角形ABC所在的平面上有一点P,满足向量PA+向量PB+向量PC=向量AB,则三角形PBC与三角形ABC面积之比为?