设a>0,b>0,c>0,求证1/2a+1/2b+1/2c≥1/(b+c)+1/(c+a)+1/(a+b)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 23:38:09
x){n_N'M/7%j$sFv&4m)4AΆ07)6IyI5L~dRPaf8(P;[5Pp`{Ny>
)Pp&5^lT?hÍI6{$A8
h~O7#DM
O
设a>0,b>0,c>0,求证1/2a+1/2b+1/2c≥1/(b+c)+1/(c+a)+1/(a+b)
设a>0,b>0,c>0,求证1/2a+1/2b+1/2c≥1/(b+c)+1/(c+a)+1/(a+b)
设a>0,b>0,c>0,求证1/2a+1/2b+1/2c≥1/(b+c)+1/(c+a)+1/(a+b)
1/4a+1/4b=(a+b)/4ab
而a>0,b>0,所以 (a+b)/2>=(ab)^0.5 即 (a+b)^2>=4ab => (a+b)/4ab>=1/(a+b),所以1/4a+1/4b>=1/(a+b)
同理
1/4a+1/4c>=1/(a+c)
1/4c+1/4b>=1/(c+b)
因此
1/4a+1/4b+1/4a+1/4c+1/4c+1/4b=1/2a+1/2b+1/2c>=1/(b+c)+1/(c+a)+1/(a+b)
1/4a+1/4b=(a+b)/4ab
而a>0,b>0,所以 (a+b)/2>=(ab)^0.5 即 (a+b)^2>=4ab => (a+b)/4ab>=1/(a+b),所以1/4a+1/4b>=1/(a+b)
因此
1/4a+1/4b+1/4a+1/4c+1/4c+1/4b=1/2a+1/2b+1/2c>=1/(b+c)+1/(c+a)+1/(a+b)