浙江版初三下教与学183页十四题求救如图 在三角形abc中,如图,∠c=90 ac=8 ab=10 点P在AC上,AP=2.若圆o的圆心在线段BP上,且圆O与AB\AC都相切,则圆的半径是 A1 B5/4 C12/7 D9/4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:51:43
浙江版初三下教与学183页十四题求救如图 在三角形abc中,如图,∠c=90 ac=8 ab=10 点P在AC上,AP=2.若圆o的圆心在线段BP上,且圆O与AB\AC都相切,则圆的半径是 A1 B5/4 C12/7 D9/4
xS_OP*QBKi ޖ} 8e7ɂ([%S}·عUZDq;;9]OU;lebi5ZDK`w ~ޠs%btjo$hc BlFή&nFfI$4C`A{aŶ'0ɶd;ɷTVZIdj8E"LF\MSH`nb BA(1UfUl:GQ¼d"&`#:q t<GVv2!2vr&8Q

浙江版初三下教与学183页十四题求救如图 在三角形abc中,如图,∠c=90 ac=8 ab=10 点P在AC上,AP=2.若圆o的圆心在线段BP上,且圆O与AB\AC都相切,则圆的半径是 A1 B5/4 C12/7 D9/4
浙江版初三下教与学183页十四题求救
如图 在三角形abc中,如图,∠c=90 ac=8 ab=10 点P在AC上,AP=2.若圆o的圆心在线段BP上,且圆O与AB\AC都相切,则圆的半径是 A1 B5/4 C12/7 D9/4

浙江版初三下教与学183页十四题求救如图 在三角形abc中,如图,∠c=90 ac=8 ab=10 点P在AC上,AP=2.若圆o的圆心在线段BP上,且圆O与AB\AC都相切,则圆的半径是 A1 B5/4 C12/7 D9/4
A1
设⊙O的半径为r,⊙O切AC,AB分别于D,E,
∵AC=8,AB=10,C=90,
∴BC=6,
又∵P在AC上且AP=2,
∴PC=AC-AP=8-2=6,
∴△PCB是等腰直角三角形,
∴PB=√2BC=6√2,∠PBC=45°,
∵OD⊥AC,
∴OD‖BC,
∴∠POD=45°,
∴△PDO也是等腰直角三角形,
∴PD=OD=r,PO=√2r,
∴OB=PB-PO=√2(6-r),
∴AD=AP+PD=2+r,
∴AE=AD=2+r,
∴BE=AB-AE=10-(2+r)=8-r,
在直角△BOE中,OE=r,OB=√2(6-r),BE=8-r,
∵OE^2+BE^2=OB^2,
∴r^2+(8-r)^2=[√2(6-r)]^2,
∴r^2+r^2-16r+64=2r^2-24r+72,
∴8r=8,
∴r=1,即⊙O 的半径是1

设⊙O的半径为r,⊙O切AC,AB分别于D,E,
∵AC=8,AB=10,C=90,
∴BC=6,
∴△PDO也是等腰直角三角形,
∴PD=OD=r,PO=√2r,
∴OB=PB-PO=√2(6-r),
∴AD=AP+PD=2+r,
∴AE=AD=2+r,
∴BE=AB-AE=10-(2+r)=8-r,
在...

全部展开

设⊙O的半径为r,⊙O切AC,AB分别于D,E,
∵AC=8,AB=10,C=90,
∴BC=6,
∴△PDO也是等腰直角三角形,
∴PD=OD=r,PO=√2r,
∴OB=PB-PO=√2(6-r),
∴AD=AP+PD=2+r,
∴AE=AD=2+r,
∴BE=AB-AE=10-(2+r)=8-r,
在直角△BOE中,OE=r,OB=√2(6-r),BE=8-r,
∵OE^2+BE^2=OB^2,
∴r^2+(8-r)^2=[√2(6-r)]^2,
∴r^2+r^2-16r+64=2r^2-24r+72,
∴8r=8,
∴r=1, 即⊙O 的半径是1

收起