已知数列an满足对任意的n∈N*,都有an>0,且a1^3+a2^3+.an^3=(a1+a2+.an)^2.1.求a1,a2的值2.求数列an的通项公式3.设数列{1/anan+2}的前n项和为S,不等式Sn>1/3loga(1-a)对任意正整数n恒成立,求实数a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 07:10:43
已知数列an满足对任意的n∈N*,都有an>0,且a1^3+a2^3+.an^3=(a1+a2+.an)^2.1.求a1,a2的值2.求数列an的通项公式3.设数列{1/anan+2}的前n项和为S,不等式Sn>1/3loga(1-a)对任意正整数n恒成立,求实数a的取值范围
xVAS@+9B$=~B/ޝY.tN=vIh҂jJi)V+(C@f8nNf. k~~ s*~_6_,viq< |%43uϘ*1'IiňSg䧯8#Է,Wg^L7ROJj̣[HZiY=e>{G*/ָS~}AT`qRy:"/  %L!owyB]1 Cф~_*owJkHr'aH@i9s#Uv$5vj~ &XF+ QU & dguOFuޏg:UD:BHkމxb\ Α>u ,^STJ'%Fvp\XjPV+ n""ح.# k|0ҵ$Q-T-_i~/<^&_}oN*4i]؉p@S&DE."`XďHA+tŃG(#* wA[{U6>\tWsP߱I.,Ԓ͈|'̟1IbfxM 

已知数列an满足对任意的n∈N*,都有an>0,且a1^3+a2^3+.an^3=(a1+a2+.an)^2.1.求a1,a2的值2.求数列an的通项公式3.设数列{1/anan+2}的前n项和为S,不等式Sn>1/3loga(1-a)对任意正整数n恒成立,求实数a的取值范围
已知数列an满足对任意的n∈N*,都有an>0,且a1^3+a2^3+.an^3=(a1+a2+.an)^2.
1.求a1,a2的值
2.求数列an的通项公式
3.设数列{1/anan+2}的前n项和为S,不等式Sn>1/3loga(1-a)对任意正整数n恒成立,求实数a的取值范围

已知数列an满足对任意的n∈N*,都有an>0,且a1^3+a2^3+.an^3=(a1+a2+.an)^2.1.求a1,a2的值2.求数列an的通项公式3.设数列{1/anan+2}的前n项和为S,不等式Sn>1/3loga(1-a)对任意正整数n恒成立,求实数a的取值范围
当n=1时,有a 1 3 =a 1 2 ,
由于a n >0,所以a 1 =1.
当n=2时,有a 1 3 +a 2 3 =(a 1 +a 2 ) 2 ,
将a 1 =1代入上式,由于a n >0,所以a 2 =2.
由于a 1 3 +a 2 3 ++a n 3 =(a 1 +a 2 ++a n ) 2 ,①
则有a 1 3 +a 2 3 ++a n 3 +a n+1 3 =(a 1 +a 2 ++a n +a n+1 ) 2 .②
②-①,得a n+1 3 =(a 1 +a 2 ++a n +a n+1 ) 2 -(a 1 +a 2 ++a n ) 2 ,
由于a n >0,所以a n+1 2 =2(a 1 +a 2 ++a n )+a n+1 .③
同样有a n 2 =2(a 1 +a 2 ++a n-1 )+a n (n≥2),④
③-④,得a n+1 2 -a n 2 =a n+1 +a n .
所以a n+1 -a n =1.
由于a 2 -a 1 =1,即当n≥1时都有a n+1 -a n =1,所以数列{a n }是首项为1,公差为1的等差数列.
故a n =n.

当n=1时,a1^3=a1^2 ,得a1=1
当n=2时,1+a2^3=(1+a2)^2 ,得a2=2
当满足Σan^3=(Σan)^2
Σa(n+1)^3=((Σan)+a(n+1))^2
Σan^3+a(n+1)^3=(Σan)^2+2a(n+1)Σan+a(n+1)^2
a(n+1)^3=2a(n+1)Σan+a(n+1)^2
a(n+1)^2...

全部展开

当n=1时,a1^3=a1^2 ,得a1=1
当n=2时,1+a2^3=(1+a2)^2 ,得a2=2
当满足Σan^3=(Σan)^2
Σa(n+1)^3=((Σan)+a(n+1))^2
Σan^3+a(n+1)^3=(Σan)^2+2a(n+1)Σan+a(n+1)^2
a(n+1)^3=2a(n+1)Σan+a(n+1)^2
a(n+1)^2-a(n+1)=2Σan
同理有an^2-an=2Σa(n-1)
两式相减有a(n+1)^2-an^2-a(n+1)+an=2an
a(n+1)^2-an^2=a(n+1)+an
得a(n+1)-an=1
递推有a(n+1)=n

第三问数列{1/anan+2}是什么意思

收起

第1,2问他们都是对的,第3问
S=1/2【1/1-1/3 1/2-1/4 ··· 1/(n-1)-1/(n 1) 1/n-1/(n 2)
=1/2【1/1 1/2-1/(n 1)-1/(n 2)】
求出s的最小值b,b>1/3loga(1-a)
a∧3b<1-a,求出a的范围

已知数列{an}满足an+1+an=4n-3(n∈N*),若对任意n∈N*,都有an^2+an+1^2>=20n-15成立,则a1的取值范围是 已知数列【an】是首项为a,公差为1的等差数列,数列【bn】满足 bn=(1+an)/an ,若对任意的n∈N,都有bn≥b8成立,则实数a的取值范围______ 数列{an}满足a1=2/3且对任意的正整数m,n都有a(m+n)=am+an,则an/n=? 已知数列{an}满足对任意的正整数n,都有an>0,且a1^3+a2^3+..an^3=(a1+a2..an)^2,设数列{1/an*an+2}设数列{1/an*an+2}的前n项和为Sn,不等式Sn>1/3loga(1-a)对于任意正整数n恒成立,求实数a的取值范围 已知数列{an}满足a1=0,a2=2 ,且对任意m,n∈N* 都有a(2m-1)+a(2n-1)=2a(m+n-1)+2(m-n)^2.(1) 求证:a(n+1)-a(n)=n.(2)写出数列{an}通项公式.方法简单的优先 -_-。sorry!应证明 a(n+1)-an=2n 已知数列{an},a1=1,对任意自然数N都有an=a(n-1)+2n-1,求{an}的通项公式 数学归纳法证明数列数列{an}满足a=1且对任意的n∈N*都有8an·(an+1)-16(an+1)+2an+5=0,记bn=(如下数列{an}满足a=1且对任意的n∈N*都有8an·(an+1)-16(an+1)+2an+5=0,记bn=(如下图.)猜想bn的通项公 已知数列an满足对任意的n∈N*,都有an>0,且a1^3+a2^3+.an^3=(a1+a2+.an)^2.1.求a1,a2的值2.求数列an的通项公式3.设数列{1/anan+2}的前n项和为S,不等式Sn>1/3loga(1-a)对任意正整数n恒成立,求实数a的取值范围 已知数列{an}满足a1=0,a2=2,且对任意m'n属于N*,都有a(2m-1)+a(2n+1)=2a(m+n-1)+2(m-n)^2设cn=(a(n+1)-an)q^(n-1),求数列{cn}的前n项和Sn 已知数列{an}满足a1=0,a2=2,且对任意m'n属于N*,都有a(2m-1)+a(2n+1)=2a(m+n-1)+2(m-n)^2设cn=(a(n+1)-an)q^(n-1),求数列{cn}的前n项和Sn 已知数列{an},满足a1=1,对任意n∈N*,有a1+3*a2+5*a3+.+(2n-1)*a=pn(p为常数) 急用,已知数列{an},满足a1=1,对任意n∈N*,有a1+3*a2+5*a3+.+(2n-1)*a=pn(p为常数) (1)求p的值及数列{an}的通项公式(2)令bn=an*a( 已知数列{an},满足a1=1,对任意n∈N*,有a1+3*a2+5*a3+.+(2n-1)*a=pn(p为常数) 急用,已知数列{an},满足a1=1,对任意n∈N*,有a1+3*a2+5*a3+.+(2n-1)*a=pn(p为常数) (1)求p的值及数列{an}的通项公式(2)令bn=an*a( 已知数列{an}的通项公式是an=n²-kn,求实数k的取值范围,使得对任意n∈N*都有an<a(n+1) . 已知等比数列{an}的同项公式为an=3^n-1,设数列{bn}满足对任意自然数n都有b1/a1+b2/a2+b3/a3+...已知等比数列{an}的同项公式为an=3^n-1,设数列{bn}满足对任意自然数n都有b1/a1+b2/a2+b 等差数列{an}的首项为a,公差为1,数列{bn}满足bn=(an)/((an)+1),若对任意n∈N*,都有bn>=b8,则实数a的取值范围是? 已知数列{An}、{Bn}满足a1=1/2 b1=-1/2 且对任意m、n∈N+,有Am+n=Am·An,Bm+n=Bm+Bn已知数列{An}、{Bn}满足A1=1/2 B1=-1/2 且对任意m、n∈N+,有Am+n=Am·An,Bm+n=Bm+Bn(1)求数列{An}{Bn}的通项公式(2)求数列{AnBn}的前n项和 已知函数f(x)满足:对任意的x∈R,x≠0,恒有f(1/x)=x成立,数列{an}、{bn}满足a1=1,b1=1,且对任意n∈自然数,均有a(n+1)=an*f(an)/(f(an)+2),b(n+1)-bn=1/an求{an}、{bn}通项公式 已知{an}是递增数列,且对任意(n∈N*)都有an=n²+λn恒成立,则实数λ的取值范围 A小于-3 B大于0 C大于-2 D大于-3