f(x) = 4/(x^3) - 1/(x^2),x∈(0,+∞),若 f(x)≥k,求 k 取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:30:12
f(x) = 4/(x^3) - 1/(x^2),x∈(0,+∞),若 f(x)≥k,求 k 取值范围
xN@_eml[hHॉ!z#K@(x!`%%KWpw[&Y^Wldb*ґ!JF#UUKd͏0@;Rɮxfl(њn"]e)8_Ap,|!lAmÙWH`R2A^'ϧ􎽺qp =`x5bo 6-% gTLLuCΔRXnGa $Z*d`M \SbF|q]gRJG%o']LeS8

f(x) = 4/(x^3) - 1/(x^2),x∈(0,+∞),若 f(x)≥k,求 k 取值范围
f(x) = 4/(x^3) - 1/(x^2),x∈(0,+∞),若 f(x)≥k,求 k 取值范围

f(x) = 4/(x^3) - 1/(x^2),x∈(0,+∞),若 f(x)≥k,求 k 取值范围
求导f(x)=-12x^-4 -2x^-3
导函市数=0极小值在x=6取到带入f(x)=-1/108
k小于等于-1/108

我的答案不知可对,你检查下
1/x^2(4/x-1)≥k
因为1/x^2恒大于0
当4≥x>0时 0≤K≤+∞
当x>4时 -1<K<0 因为当x=+∞时1/x^2,4/x趋于0
-1<k≤+∞
就这样吧