实数a1,a2,...,a8满足a1+a2+...+a8=20,a1a2...a8

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:56:55
实数a1,a2,...,a8满足a1+a2+...+a8=20,a1a2...a8
xN@_#e¶ =} K{`Tj

实数a1,a2,...,a8满足a1+a2+...+a8=20,a1a2...a8
实数a1,a2,...,a8满足a1+a2+...+a8=20,a1a2...a8

实数a1,a2,...,a8满足a1+a2+...+a8=20,a1a2...a8
若x>=1,y>=1,则(x-1)(y-1)=xy-x-y+1>=0,
∴xy>=x+y-1.于是
若实数a1,a2,...,a8均不小于1 ,
则a1a2a3a4,a5a6a7a8不小于1,
∴a1a2…a8>=a1a2a3a4+a5a6a7a8-1,
同理a1a2a3a4>=a1a2+a3a4-1,
a5a6a7a8>=a5a6+a7a8-1,
则a1a2…a8>=a1a2a3a4+a5a6a7a8-1>=a1a2+a3a4-1+a5a6+a7a8-1-1>=a1a2+a3a4+a5a6+a7a8-3
同理:
a1a2>=a1+a2-1,
a3a4>=a3+a4-1,
a5a6>=a5+a6-1,
a7a8>=a7+a8-1,
∴a1a2…a8>=a1+a2+a3+a4+a5+a6+a7+a8-7=13,
这与“a1a2...a8

若均不小于1
则12>a1a2a3a4a5a6a7a8
>=1*(a1+a2-1)a3a4a5a6a7a8
>=1*1*(a1+a2+a3-2)a4a5a6a7a8
>=...>=1*1*1*1*1*1*1*(a1+a2+a3+a4+a5+a6+a7+a8-7)=13,矛盾
故这八个数中至少有一个小于1