一道数学题,等的,已知平行六面体ABCD—A1B1C1D1的底面是菱形,且∠C1CB=∠C1CD=∠BCD=60°.(1)证明:CC1⊥BD.(2)假定:CD=2,CC1= ,记面C1BD为α,面CBD为β,求二面角α—BD—β的平面角的余弦值.(3)当 的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 01:13:47
一道数学题,等的,已知平行六面体ABCD—A1B1C1D1的底面是菱形,且∠C1CB=∠C1CD=∠BCD=60°.(1)证明:CC1⊥BD.(2)假定:CD=2,CC1= ,记面C1BD为α,面CBD为β,求二面角α—BD—β的平面角的余弦值.(3)当 的
xUNW~ N]E TlZ@JoQ0l/Ivo@aR9=+3sn/e[wg|T} 4]k#.7]cwW{xn`^[].< 4b|hԮJ 1vMt-uc:_2,w=Iw[Jq  4*ˋw}_SPH ̗&z&6F|4j:yM[gPᖡ·P9uӣmêTjJ0Sf޳ Uddm[*t[-&.G6'&n^PmmA ]K$DE0N0<^,e SDc p9@4\hddTx$3(A·I-ʙ1WO,ZՖB>S3pqHi`DA@XEIwV97oP9g=Co=Oȓs4> D0 H_I|̃=Tߓ_UR, g/?%8E.#հ,acx S6QѰcgSB4Ө 2ЋL$ElB`|;e_dDHy* 1CSCKEO.eo#kܩ[_53(LI ʆš )9"@.5rA[y5T6(U^l_qv}30{JNq˦7 k\/^yin:^iu E= xlvI àBNƖcMا@9xFFm<,j_{6(b8 Y(pkK P "]k(q%tU ů$}%=ϩ}\nX*'M.UF0Е|fψZ%̔V] vSA].ySU]` ,_?uE ZˆS

一道数学题,等的,已知平行六面体ABCD—A1B1C1D1的底面是菱形,且∠C1CB=∠C1CD=∠BCD=60°.(1)证明:CC1⊥BD.(2)假定:CD=2,CC1= ,记面C1BD为α,面CBD为β,求二面角α—BD—β的平面角的余弦值.(3)当 的
一道数学题,等的,
已知平行六面体ABCD—A1B1C1D1的底面是菱形,且∠C1CB=∠C1CD=∠BCD=60°.
(1)证明:CC1⊥BD.
(2)假定:CD=2,CC1= ,记面C1BD为α,面CBD为β,求二面角α—BD—β的平面角的余弦值.
(3)当 的值是多少时,能使A1C⊥面C1BD?请给予证明.
第一,二小问我会的,第三小问知道是1:1.不知道怎么证明,希给出第三问详细证明过程,
上.上面有这个图的.
为什么A1C与C1E一定有交点?

一道数学题,等的,已知平行六面体ABCD—A1B1C1D1的底面是菱形,且∠C1CB=∠C1CD=∠BCD=60°.(1)证明:CC1⊥BD.(2)假定:CD=2,CC1= ,记面C1BD为α,面CBD为β,求二面角α—BD—β的平面角的余弦值.(3)当 的
先设CC1=1,问题中的比值设为X,则CD=X,连结C1E(E为BD中点),则有CE:C1A1=1:2,根据相似三角形,有C1F:FE=A1F:FC=2:1(F为C1E与A1C交点)
由余弦定理和∠C1CD=60 得C1D^2=X^2-X+1
因BD=CD=X,所以DE=X/2 由勾股定理得CE^2=3X^2/4-X+1
两边除以9,则为(CE/3)^2=FE^2=(3X^2/4-X+1)/9
同理可得FC^2=(A1C/3)^2=(3X^2+2X+1)/9(arccos∠A1AC=(-√3/3),证略)
因为A1C垂直面C1BD,又显然A1C垂直BD,所以只要证A1C垂直C1E即可,所以有FE^2+FC^2=EC^2=3X^2/4,代入后得X=1(舍去负值),所以CD:CC1=1:1得证
PS:其中^表示乘方,如X^2表示X的平方,√表示根号,如2√3/3表示3的平方根的二陪再除以3
补充补充:至于交点,LZ请想象一下,首先,题目说,∠C1CB=∠C1CD=60°,由此应该不难想象到C1C在面AC上射影应该是∠BCD的平分线,底面是菱形,所以∠BCD的平分线只能是CE,故CC1在面AC的射影是CE,所以C1E的射影也为CE(因为已经得到:点C1的射影在CE上了),OK,至于A1C,LZ也可以同理,用A1A做想象,A1A的射影(在面AC的射影)是∠BAD的平分线,故也为∠BCD的平分线(因为是菱形嘛),所以其射影也必为CE,好了,现在C1E与A1C的射影相同,且两者不可能一起垂直于面AC,所以应该很容易想象得出,两者必有一交点.

一道数学题,等的,已知平行六面体ABCD—A1B1C1D1的底面是菱形,且∠C1CB=∠C1CD=∠BCD=60°.(1)证明:CC1⊥BD.(2)假定:CD=2,CC1= ,记面C1BD为α,面CBD为β,求二面角α—BD—β的平面角的余弦值.(3)当 的 边长已知平行六面体ABCD-A1B1C1D1中,底面的为a的正方形,侧棱AA1为b, 边长已知平行六面体ABCD-A1B1C1D1中,底面的为a的正方形,侧棱AA1为b, 已知平行六面体ABCD-A1B1C1D1,底面ABCD是边上为3的正方形,棱AA1=5,∠BAA1=∠DAA1=600,求(1)棱AA1与平面ABCD所成的夹角(2)平行六面体的体积 一道数学题正方形ABCD 一道数学题,基本的 在线等 一道数学题 在线等 好的追加 如图,已知平行六面体ABCD—A1B1C1D1的底面 ABCD是菱形,且∠C1CB=∠C1CD=∠BCD 求证 CA1⊥B1D1 平行六面体的问题已知平行六面体ABCD-A1B1C1D1中,AB=AD=AA1,∠BAD=∠BAA1=∠DAA1=60°,则向量AC等于多少?是求向量AC1 一道空间向量题已知ABCD-A1B1C1D1是平行六面体,(1)化简1/2向量AA1+向量BC+2/3向量AB,并在图上以A1A的中点为起点标出计算结果(2)设M是底面ABCD的中心,N是侧面BCC1B1对角线BC1上的点,且BN:NC1=3:1, 、已知平行六面体ABCD—A1B1C1D1的底面是边长为a的菱形,O为菱形ABCD的中心,∠BAD=公式法、已知平行六面体ABCD—A1B1C1D1的底面是边长为a的菱形,O为菱形ABCD的中心,∠BAD=∠BAA1=∠DAA1=60度,  有关空间向量的已知平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都是1,切两两夹角为60°,求AC1的长. 已知平行六面体ABCD-A1B1C1D1同一顶点A为端点 的三条棱都等于1且彼此夹角为60度球AC1的长 已知平行六面体ABCD-A1B1C1D1,E,F,G,H分别是棱A1D1,C1D1,C1C,AB的中点,求证:E,F,G,H四点共面 直平行六面体和平行六面体 的区别 :对角线相等的平行六面体是直平行六面体 已知平行六面体ABCD-A1B1C1D1,化简向量AB+向量AD+1/2向量CC1 一道数学高中选修题已知平行六面体ABCD-A1B1C1D1的顶点A为端点的三条棱都等于1,且彼此的夹角都等于60度,则对角线AC1的长等于多少 解答时尽量画图啊,详细解题过程