一道极坐标题曲线C:p=a(1+cosr) 即心脏线,当r=π/2时对应的点M,求C在点M处的切线方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 16:32:01
一道极坐标题曲线C:p=a(1+cosr) 即心脏线,当r=π/2时对应的点M,求C在点M处的切线方程
xN@_D۴uZBac' ,Fٙ(MDDQo`xg(@qaN9Zjg1|.[K![یYޯ֖8 ߳a-U\? =c|*SIBh9UyV"WLz}ȁglQDhDQ$+ !۵:xǒQ#\_oj>Rq̔Wsvrse!K 0gv'dYac5}+,NVSAe(0svS\t@!`F" z w(42eT`2y[o_fh%3π8Wu3" Id$ּmp2< B^|0/

一道极坐标题曲线C:p=a(1+cosr) 即心脏线,当r=π/2时对应的点M,求C在点M处的切线方程
一道极坐标题
曲线C:p=a(1+cosr) 即心脏线,当r=π/2时对应的点M,求C在点M处的切线方程

一道极坐标题曲线C:p=a(1+cosr) 即心脏线,当r=π/2时对应的点M,求C在点M处的切线方程
曲线C:ρ=a(1+cosθ) 即心脏线,当θ=π/2时对应的点M,求C在点M处的切线方程
θ=π/2时 ρ=a;即M点的极坐标为(a,π/2);M点的直角坐标为(0,a);
将极左边方程还原成直角坐标方程:√(x²+y²)=a[1+x/√(x²+y²)];
即有x²+y²-ax=a√(x²+y²);
设F(x,y)=x²+y²-ax-a√(x²+y²);
那么dy/dx=-(∂F/∂x)/(∂F/∂y)=-[2x-a-a/√(x²+y²)]/[2y-a/√(x²+y²)]=-[(2x-a)√(x²+y²)-a]/[2y√(x²+y²)-a]
将x=0,y=a代入得过M点的切线的斜率k=y'(0)=(a+1)/(2a-1)
故过点M的切线方程为y=[(a+1)/(2a-1)]x+a.