f(xy)=f(x)+f(y) f(1/2)=1 证明奇函数对于函数f(x)的定义域是(0,+∞),f(xy)=f(x)+f(y) 且f(1/2)=1,如果对于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 16:54:42
f(xy)=f(x)+f(y) f(1/2)=1 证明奇函数对于函数f(x)的定义域是(0,+∞),f(xy)=f(x)+f(y) 且f(1/2)=1,如果对于0
xTN@YRK S\ D, t(E  1Sˊ_L[FD7&.sϽYK)(*j)(C0 +~*7ij΢?ݡu驿ٴ:nz{iDiz 91;42eRrX27fn(=D=iV5t<Z^*-a&3Q}^/gY ÕVVlQug1p[ٮb/\c}= SxB;|@.丨Rhh9ƮPPb:h%on qȅO |\_HæEDٰNμy3t$ рXpRMIf4tȀ2lߎY`&)¶[ǒ`u]On nhIB1ȏF'Rjr>h_b. rH`_ʏ@ v ݩݠrK;LNp67g 7}

f(xy)=f(x)+f(y) f(1/2)=1 证明奇函数对于函数f(x)的定义域是(0,+∞),f(xy)=f(x)+f(y) 且f(1/2)=1,如果对于0
f(xy)=f(x)+f(y) f(1/2)=1 证明奇函数
对于函数f(x)的定义域是(0,+∞),f(xy)=f(x)+f(y) 且f(1/2)=1,如果对于0

f(xy)=f(x)+f(y) f(1/2)=1 证明奇函数对于函数f(x)的定义域是(0,+∞),f(xy)=f(x)+f(y) 且f(1/2)=1,如果对于0
f(xy)=f(x)+f(y)
取x=y=1,得f(1)=f(1)+f(1)所以f(1)=0
f(1/2)=1,所以f(1/4)=f(1/2)+f(1/2)=2
0

f(xy)=f(x)+f(y),令X=Y=1,则f(1)=f(1)+f(1),则f(1)=0
f(-x)+f(3-x)≥-2 即f(-x)+f(3-x)+1+1≥0 f(1/2)=1 f(1)=0
即f(-x*(3-x))+f(1/2)+f(1/2)≥f(1) 即 f[1/4(x^2-3x)]≥f(1) 对于0f(y) 故 -x>0 3-x>0 1/4(x^2-3x)<=1 解得 -1<=x<0

1.因为f(xy)=f(x)+f(y)
令x=1
所以f(y)=f(1)+f(y)
解得f(1)=0
2.以为 f(1/2)=1 所以f(1/4)=f(1/2)+f(1/2)=2
又因为 f(xy)=f(x)+f(y) 是奇函数
所以f(-x)+f(3-x)=f(x^2 -3x)...

全部展开

1.因为f(xy)=f(x)+f(y)
令x=1
所以f(y)=f(1)+f(y)
解得f(1)=0
2.以为 f(1/2)=1 所以f(1/4)=f(1/2)+f(1/2)=2
又因为 f(xy)=f(x)+f(y) 是奇函数
所以f(-x)+f(3-x)=f(x^2 -3x)
由f(-x)+f(3-x)≥-2 得
即 f(1/4)≥f(3x-x^2)
又因为0f(y)
所以 3x-x^2>0 [定义域]
3x-x^2≥1/4

后边自己解就行了

收起