3(2²+1)(2^4+1)(2^8+1)(2^16+1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 10:04:07
3(2²+1)(2^4+1)(2^8+1)(2^16+1
x)3~HMZPS(BY@(C3mC"}P{:JmJuA$30()ĩLS(H<;h؀9Dx6^XhZ0&mONld'"~iL@=߽ϧxsi;n_u= } Nˬ

3(2²+1)(2^4+1)(2^8+1)(2^16+1
3(2²+1)(2^4+1)(2^8+1)(2^16+1

3(2²+1)(2^4+1)(2^8+1)(2^16+1
3(2²+1)(2^4+1)(2^8+1)(2^16+1)
=(2²-1)(2²+1)(2^4+1)(2^8+1)(2^16+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)
=(2^8-1)(2^8+1)(2^16+1)
=(2^16-1)(2^16+1)
=2^32-1

3(2²+1)(2^4+1)(2^8+1)(2^16+1=[2^32-1]/[2²-1]=2^32-1

分子分母都乘以2²-1,则分子可以连续使用平方差公式,原式=[2^32-1]/[2²-1]=2^32-1