设函数y=f(x)由方程2y^3-2y^2+2xy-x^2=1所确定的,求解f(x)的极值
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/04 08:01:15
xQMO@9tS!zaS ?=A/`_,l{/{ơuwK454}Vp1TA0z1hdհ~E#xa9;ueHIQݞA䢵l^q!4O['-7Pq=rOcz9^Z~#f.u!R-6÷(avUJc;Β2
s4'N5Sg3,E_':ѩ7C k
设函数y=f(x)由方程2y^3-2y^2+2xy-x^2=1所确定的,求解f(x)的极值
设函数y=f(x)由方程2y^3-2y^2+2xy-x^2=1所确定的,求解f(x)的极值
设函数y=f(x)由方程2y^3-2y^2+2xy-x^2=1所确定的,求解f(x)的极值
两边对x求导:
6y^2*y'-4y*y'+2y+2xy'-2x=0
即y'=(x-y)/(3y^2-2y+x)
令y'=0,得:x=y
再将x=y代入原方程,得:2x^3-2x^2+2x^2-x^2=1,得:2x^3-x^2-1=0
2x^3-2x^2+x^2-1=0
2x^2(x-1)+(x-1)(x+1)=0
(x-1)(2x^2+x+1)=0
得唯一根x=1,
即极值点为(1,1),极值即为y=f(1)=1.