已知数列{an}的前n项和为Sn,且有Sn=½ n²+11/2n,数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),前9项和为153;(1)求数列{an}、{bn}的通项公式;(2)设cn=3/(2an-11)(2bn-1),数列{cn}的前n项

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 18:55:28
已知数列{an}的前n项和为Sn,且有Sn=½ n²+11/2n,数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),前9项和为153;(1)求数列{an}、{bn}的通项公式;(2)设cn=3/(2an-11)(2bn-1),数列{cn}的前n项
xSn@|V#pIv$.V'dʟ-@U+ H@JuS%Wu6EJ63;N#=yϷ|uX>|?oƚx;BK(DpB0l3j$1V*V`duw7ዓn@תan-r %Q`ފiWiy0y83^z[Ez4 aa xьFI@ߔi XI^r6ޔϷw(Yy`g&bu _0phD4P.@9b]Χ9Yf$V5\P55VrE@,S\UFO6P%6-^> HO`0``ۃHY

已知数列{an}的前n项和为Sn,且有Sn=½ n²+11/2n,数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),前9项和为153;(1)求数列{an}、{bn}的通项公式;(2)设cn=3/(2an-11)(2bn-1),数列{cn}的前n项
已知数列{an}的前n项和为Sn,且有Sn=½ n²+11/2n,数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),
前9项和为153;
(1)求数列{an}、{bn}的通项公式;
(2)设cn=3/(2an-11)(2bn-1),数列{cn}的前n项和为Tn,求使不等式Tn>k/57对一切n∈N*都成立的最大正整数k的值;

已知数列{an}的前n项和为Sn,且有Sn=½ n²+11/2n,数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),前9项和为153;(1)求数列{an}、{bn}的通项公式;(2)设cn=3/(2an-11)(2bn-1),数列{cn}的前n项
(1)an=Sn-Sn-1=½ n²+11/2n-½ (n-1)²+11/2(n-1)=n+5
bn+2-bn+1=bn+1-bn
所以数列{bn+1-bn}是q=1的等比数列
bn+1-bn=b2-b1
所以bn是公差为a=(b2-b1)的等差数列
bn=b1+(n-1)*a
Un=nb1+n(n-1)(b2-b1)/2 U9=153 即9b1-9*8*(b2-b1)/2=153
4b2-3b1=17 → b2=(17+3b1)/4
bn=b1+(n-1)(17-b1)/4
个人认为b1=5(题目所缺),
bn=5+3/2(n-1)
(2)cn=1/((2n-1)(2n+1))=1/2(1/(2n-1)-1/(2n+1))
Tn=1/2(1/(2*1-1)-1/(2*1+1)+1/(2*2-1)-1/(2*2+1)+……+1/(2n-1)-1/(2n+1))
=1/2(1-1/(2n+1))

已知数列{an}的前n项和为sn,且满足sn=n 已知数列{an} 的前n项和为sn,且an=sn *s(n-1)a1=2/9 求证:{1/sn}为等差 已知数列{an}的前n项和为Sn,且Sn=lgn 求通项公式 已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*求数列{Sn}的通项公式,并求出使得S(n+1)>Sn成立的最小整数n 已知数列an的前n项和为Sn,且An=3^n+2n,则Sn等于 1.已知数列an的前n项和为Sn,且Sn=2^n,求通项an;2.已知数列an的前n项和为Sn,且Sn=n^2+3n,求通项an; 已知数列{An}的前N项和为Sn且a1=1,Sn=n^2乘An.猜想Sn的表达式?有知道的吗? 若数列{an}是等差数列,且对任意正整数n都有Sn3=(Sn)^3成立,求数列{an}的通项公式.已知无穷数列{an}的各项均为正整数,Sn数列的前n项和.(1)若数列{an}是等差数列,且对任意正整数n都有S(n^3)=(Sn 已知数列{an}的前n项和为Sn,且对任意n属于N ,有n,an,Sn成等差数列.(1).求数列{an}的通项公式;(2)求数列{nan}的前n项和Tn. 已知数列{an}的前n项和为Sn,且an=n2的n次方,则Sn= 已知{an}的前n项和为Sn,且an+Sn=4求证:数列{an}是等比数列 已知数列an的前n项和为sn 且有2an=sn+n 求数列an的通项公式和前n项和sn 已知数列an的前n项和为Sn,且a1=1,Sn-S(n-1)=2SnS(n-1) 已知数列{an}的前n项和为Sn,且有a1=2,3Sn=5an-a(n-1)+3S(n-1) (n≥2,n∈N+)(1)求数列{an}的通项公式(2)设bn=(2n-1)an,求数列{bn}的前n项的和Tn 已知数列{an}的前n项和为Sn,且Sn=2an-n(n∈N*),求数列{an}的通项公式. 已知数列an的前n项和为sn,且sn+an=n^2+3n+5/2,证明数列{an-n}是等比数列 已知数列 an的前 n项和为Sn=n-5an-85 ,且n属于N* ,(1 已知数列an是等差数列,且a1不等于0,Sn为这个数列的前n项和,求limnan/Sn.limSn+Sn-1/Sn+Sn-1