数列an的前n项和Sn满足Sn=3n+1,n≤5,Sn=n^2,n≥6,求通项公式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:42:13
数列an的前n项和Sn满足Sn=3n+1,n≤5,Sn=n^2,n≥6,求通项公式
xRMN@JhPvDFz o!P!€D%Te|3C;6mߛ}ojvlw/hN}:fdnYET@PƊټeW4ִ̣墹h*zh.n y Oh%zpZM'qΩAmh"R%0E1B$b)J4USftJ~ܤ$×d裨"u&Vb]Vq~?=`| 6Q QГC,kmc4e(VAd݂hLaLV% ςpz W5o憍uqt^s%]Zm-C|2'eTJ|

数列an的前n项和Sn满足Sn=3n+1,n≤5,Sn=n^2,n≥6,求通项公式
数列an的前n项和Sn满足Sn=3n+1,n≤5,Sn=n^2,n≥6,求通项公式

数列an的前n项和Sn满足Sn=3n+1,n≤5,Sn=n^2,n≥6,求通项公式
分析:由于对于数列的n值有不同范围取值,对应不同的求和公式,可知数列为分段数列,需要对不同范围的n值进行讨论,方可求得数列的通项公式;
当n=1 时,a1=S1=3+1=4;
当2≤n≤5时,
an=Sn-S(n-1)
=(3n+1)-[(3n-1)+1]= 3
当n=6时,
a6=S6-S5
=6^2-(3*5+1)
=20
当7≤n时
an=Sn-S(n-1)
=n^2-(n-1)^2
=2n-1
综上可得数列an的通项公式为:
4 n=1
an=﹛ 3 2≤n≤5
20 n=6
2n-1 7≤n