猜想Sn=1/1*2+1/2*3,...,1/n*(n+1)的表达式,并用数学归纳法证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 19:20:00
猜想Sn=1/1*2+1/2*3,...,1/n*(n+1)的表达式,并用数学归纳法证明
xTn@~ Kl0/1JjA @*444QJEmiKH0]R> hC,;?߬gfX)Kf9eSW5UѲ,9U1;ŋ? Kurt: NwKG39p\c篊O)yR)<}.xW^pY@sM&{ &P͔5⍡lR("!X5P2DU~U6(jMfK3GN K;:Om$C9ф2Bt\9\ہ`_DR1zyPN`2F$ v66swM8׏9:󪈊[Zti$v?G '){GDƇHHijB&p/-y|_p|Gk->;GԫT_y-b4\ZlXHz[q"PHڀ%FW#accO&~#Mz

猜想Sn=1/1*2+1/2*3,...,1/n*(n+1)的表达式,并用数学归纳法证明
猜想Sn=1/1*2+1/2*3,...,1/n*(n+1)的表达式,并用数学归纳法证明

猜想Sn=1/1*2+1/2*3,...,1/n*(n+1)的表达式,并用数学归纳法证明
Sn=1/1*2+1/2*3,...,1/n*(n+1)
=(1-1/2)+(1/2-1/3)+.+[1/n-1/(n+1)]
=1-1/(n+1)
=n/(n+1)
用数学归纳法证:
当k=1时:S1=1/1*2=1/2 k/(k+1)=1/2 所以Sk=k/(k+1)
假设当k=n时成立,即:Sn=n/(n+1)
那么当k=n+1时,证明S(n+1)=(n+1)/(n+2)即可
S(n+1)=1/1*2+1/2*3,...,1/n*(n+1)+1/(n+1)(n+2)
=n/(n+1)+1/(n+1)(n+2)
=n(n+2)/(n+1)(n+2)+1/(n+1)(n+2)
=(n^2+2n+1)/(n+1)(n+2)
=(n+1)^2/(n+1)(n+2)
=(n+1)/(n+2)
所以综上:Sn=n/(n+1)
o(∩_∩)o...

不用数归发简单啊。 Sn=1-1/2+1/2-1/3+1/3-1/4+......+ 1/n-1 - 1/n + 1/n - 1/n+1=1- 1/n+1=n+1/n+1 - 1/n+1 =n/n+1 一般来说做数学我都是避开用数归法的,因为数归比较麻烦。

Sn=1-1/(n+1).
证明:
Sn=1/1*2+1/2*3,...,1/n*(n+1)
Sn=1-1/2 + 1/2-1/3+……+1/n-1/(n+1).
由此可以看出中间项全部背抵消只剩下首项和尾项。
所以
Sn=1-1/(n+1)

Sn=n/(n+1)
(1). n=1 时 S1=1/2 成立
(2). 假设n=k时猜想成立,即Sk=k/(k+1)
n=k+1时 S(k+1)=k/(k+1) + 1/(k+1)*(k+2)
S(k+1)=[k*(k+2)+1]/(k+1)(k+2)=(k+1)/(k+1+1)
满足假设
综上 Sn=n/(n+1)

数列an中,a1=-2/3,sn+1/sn=an-2(n>1的整数),求s1,s2,s3,猜想sn表达式,并证明 已知数列{an}的前n项和为Sn,a1=-2/3,满足Sn+1/Sn+2=an(n>=2),计算S1,S2,S3,S4,并猜想Sn表达式. 已知数列{an}的前n项和为sn,a1=-2/3,满足sn+1/sn+2=an (n大于或等于2),计算S1,S2,S3,S4 猜想sn表达式 已知等差数列{an}的前N项和为Sn,a1=-2/3,满足Sn+1/Sn+2=an(n大于等于2),计算S1,S2,S3,S4,猜想Sn的表达式,并用数学归纳法给予证明. 已知数列an的前n项和为sn,a1=-2/3,满足sn+1/sn+2=an(n大于等于2),计算S1,S2,S3,S4.并猜想sn的表达式! 已知数列an的前n项和为Sn,a1=-2/3,满足Sn+(1/Sn)+2=an,计算S1,S2,S3,S4,并猜想Sn 已知数列 an 的前n项和为Sn,a1= -2/3 ,满足Sn+ 1/Sn +2=An.计算S1 S2 S3 S4 并猜想Sn的表达式.本人数学没及格过 已知数列{an}的前n项和为Sn,a1= - 2/3,满足Sn + 1/Sn+2=an(n>=2),计算S1,S2,S3,S4,并猜想Sn得表达式已知数列{an}的前n项和为Sn,a1= - 2/3,满足Sn + 1/Sn +2=an(n>=2),计算S1,S2,S3,S4,并猜想Sn得表达式 !已知数列(an)的前n项和为Sn,a1=-(2/3),满足Sn+(1/Sn)+2=an(n≥2),计算S1,S2,S3,S4,并猜想Sn的表达式已知数列(an)的前n项和为Sn,a1=-(2/3),满足Sn+(1/Sn)+2=an(n≥2),计算S1,S2,S3,S4,并猜想Sn的表达式 设Sn=1^2-2^2+3^-4^2+...+(-1)^(n-1)*n^2,猜想Sn关于n的表达式并用数学归纳法证明 已知数列{An}的前N项和为Sn且a1=1,Sn=n^2乘An.猜想Sn的表达式?有知道的吗? 猜想Sn=1/1*2+1/2*3,...,1/n*(n+1)的表达式,并用数学归纳法证明 猜想Sn=1/1*2+1/2*3,...,1/n*(n+1)的表达式,并用数学归纳法证明 已知a,b是方程x2-x-1=0的两个根,S1=a+b,S2=a2+b2,…Sn=an+bn 当n为不小于3的整数时,猜想Sn,Sn-1,Sn-2 有何数量关系,并用你学过的知识说明你的猜想的正确性. 数列{an}中,已知sn=an-1/sn-2,①:求出s1,s2,s3,s4,②:猜想数列{an}的前n项和sn的公式,并加以证明数列{an}中,已知sn=an-1/sn-2,①:求出s1,s2,s3,s4,②:猜想数列{an}的前n项和sn的公式,并加以证明 已知数列{an}的前n项和Sn,a1=-2/3,且Sn+1/Sn+2=an(n>&=2).计算S1 S2 S3 S4,并猜想表达式. 已知数列an的前n项和为Sn,a1=-2/3,Sn+1/Sn=an-2(n≥2n∈N)(1)求S2,S3,S4的值(2)猜想并用数学归纳法证明已知数列an的前n项和为Sn,a1=-2/3,Sn+1/Sn=an-2(n≥2,n∈N*)(1)求S2,S3,S4的值(2)猜想并用数学归纳法证明 Sn=1/2(an+1/an) Sn是前n项和 求a1,a2,a3.猜想{an}的通项公式,并用数学归纳法证明