阶乘数列求和1/2!+2/3!+3/4!+…+n/(n+1)!为多少?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:25:57
阶乘数列求和1/2!+2/3!+3/4!+…+n/(n+1)!为多少?
x){9cۓ3McMO')j+j(j?jXmdǮKf=0&H^0qPf)5A2 JP5V5tMm}o:!: A:@e bXPy`5!yv  

阶乘数列求和1/2!+2/3!+3/4!+…+n/(n+1)!为多少?
阶乘数列求和
1/2!+2/3!+3/4!+…+n/(n+1)!为多少?

阶乘数列求和1/2!+2/3!+3/4!+…+n/(n+1)!为多少?
由k/(k+1)!=(k+1-1)/(k+1)!=1/k!-1/(k+1)!,故得
1/2!+2/3!+3/4!+…+n/(n+1)!
=1/1!-1/2!+1/2!-1/3!+1/3!-1/4!+…+1/n!-1/(n+1)!
=1-1/(n+1)!