若a,b,m,n都为正实数,且m+n=1,试比较√(ma+nb)与m√a+n√b的大小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 10:45:29
若a,b,m,n都为正实数,且m+n=1,试比较√(ma+nb)与m√a+n√b的大小
x){ѽ4Q'I'W'e';v=[yϦnycJv΋Sb_YyIOvy@6Lz>O7$SD;ZRL3HWI!Vb ͍3RHIF I0y C\M" .'O#Q(҄Pu.5K

若a,b,m,n都为正实数,且m+n=1,试比较√(ma+nb)与m√a+n√b的大小
若a,b,m,n都为正实数,且m+n=1,试比较√(ma+nb)与m√a+n√b的大小

若a,b,m,n都为正实数,且m+n=1,试比较√(ma+nb)与m√a+n√b的大小
(√(ma+nb))^2-(m√a+n√b)^2
=ma+nb-m^2 a-n^2 b-2mn√ab
=ma(1-m)+nb(1-n)-2mn√ab
=mna+mnb-2mn√ab
=mn(a+b-2√ab)
=mn(√a-√b)^2≥0
所以 (√(ma+nb))^2≥(m√a+n√b)^2
所以√(ma+nb)≥m√a+n√b