f(x)=log以3为底x/27的对数*log以3为底3x的对数,x属于[1/27,9]的最值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 13:30:00
f(x)=log以3为底x/27的对数*log以3为底3x的对数,x属于[1/27,9]的最值
xN0_'&"JHHP,f CXڪ#Ab(iy;18;tUM"nW`7k&Խ~ $ƽ~$Ȟ sU;5J5-3umGT ;,<4]jY~BpR(",(d@mEsPvB&ocPKJ=`]Hܮr{x?s9rBo!J

f(x)=log以3为底x/27的对数*log以3为底3x的对数,x属于[1/27,9]的最值
f(x)=log以3为底x/27的对数*log以3为底3x的对数,x属于[1/27,9]的最值

f(x)=log以3为底x/27的对数*log以3为底3x的对数,x属于[1/27,9]的最值
f(x)=[log3(x)-log3(27)][log3(3)+log3(x)]
=[log3(x)-3][log3(x)+1]
令a=log3(x)
1/27<=x<=9
3^(-3)<=x<=3^2
所以-3<=a<=2
y=f(x)=(a-3)(a+1)=a^2-2a-3=(a-1)^2-4
对称轴a=1,开口向上
所以a=1,f(x)最小=-4
a=-3,f(x)最大=12