已知关于X的一元二次不等式ax^2+bx+c>-2x的解为1<x<3.(1)若方程ax^2+bx+c+6a=0有两个不相等的实数根,求二次函数解析式(2)函数y=ax^2+bx+c的最大值为正数,求实数a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 13:47:40
已知关于X的一元二次不等式ax^2+bx+c>-2x的解为1<x<3.(1)若方程ax^2+bx+c+6a=0有两个不相等的实数根,求二次函数解析式(2)函数y=ax^2+bx+c的最大值为正数,求实数a的取值范围
xTn@~M"aRHkU^`~RhMH61A_ks+tkܤCz77ɭ%jصIq{zUL&udhiɁYbKN|āC9Pi#~a-HsIb$nz eTR]3bNL69:!TгC D0lU|n(3詎J{kR21=SXN5k^8L{- .QmɢVjqJz q4tv P"P{̵9Ap R$_S9*z^\x@9UvIW\a炬e̼*' %".q!^"JɚeB.A%MPXFb;1T4dhq0[^$BϺxMN֔lԙ;

已知关于X的一元二次不等式ax^2+bx+c>-2x的解为1<x<3.(1)若方程ax^2+bx+c+6a=0有两个不相等的实数根,求二次函数解析式(2)函数y=ax^2+bx+c的最大值为正数,求实数a的取值范围
已知关于X的一元二次不等式ax^2+bx+c>-2x的解为1<x<3.
(1)若方程ax^2+bx+c+6a=0有两个不相等的实数根,求二次函数解析式
(2)函数y=ax^2+bx+c的最大值为正数,求实数a的取值范围

已知关于X的一元二次不等式ax^2+bx+c>-2x的解为1<x<3.(1)若方程ax^2+bx+c+6a=0有两个不相等的实数根,求二次函数解析式(2)函数y=ax^2+bx+c的最大值为正数,求实数a的取值范围
(1)一元二次不等式ax^2+bx+c>-2x可化为ax^2+(b+2)x+c>0
因为其解为1<x<3,所以a<0,且原不等式与a(x-1)(x-3)>0等价
可以求得-4a=b+2即b=-2-4a
3a=c c=3a
则方程ax^2+bx+c+6a=0可化为ax^2-(2+4a)x+9a=0
因为其有两个相等的实数根
所以有a<0
Δ=(2+4a)^2-36a^2=0
解得a=-1/5或1(舍去)
得a=-1/5.
则二次函数解析式为y=-1/5x^2-6/5x-3/5
(2)y=ax^2-(2+4a)x+3a
最大值为正数
即[4a*3a-(2+4a)^2]/(4a)>0
a<0
解得根号3-2<a<0或a<-根号3-2
第一问的题目应该有一些问题,我改了一下.二次函数解析式也是按第二问求的.
大致的思路是这样,如有算错的地方还请包含.

a<0,b=-2-4a,c=3a
b^2-4ac-24a^2>0,a!=0
c-b^2/4a>0

由 已知关于X的一元二次不等式ax^2+bx+c>-2x的解为1<x<3。可知
ax^2+bx+c+2x=0 的解为 1 3
所以a+b+c+2=0
9a+3b+c+6=0
-b/2a=2韦达定理
解出 a b c
其他可解
函数图像很重要