证明tanα-cotα=(1-2cos^2α)/(sinαcosα)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:01:21
证明tanα-cotα=(1-2cos^2α)/(sinαcosα)
x){ٌļsuKm05J/3:QS_8(96IE$/!$`-X>X.@$lApAT؆$_\gu HڂܫV\Z`d ى$]a @rH~*

证明tanα-cotα=(1-2cos^2α)/(sinαcosα)
证明tanα-cotα=(1-2cos^2α)/(sinαcosα)

证明tanα-cotα=(1-2cos^2α)/(sinαcosα)
tanα-cotα
=sinα/cosα-cosα/sinα
=[sin^2α-cos^2α)/sinαcosα
=(1-2cos^2α)/sinαcosα

tanα-cotα=sinα/cosα-cosα/sinα=(sin²α-cos²α)/sinαcosα=(1-cos²α-cos²α)/sinαcos=(1-2cos²α)/sinαcosα