如图,△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点H,AE=BE,试说明AH=2BD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 14:13:34
如图,△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点H,AE=BE,试说明AH=2BD
x[kAǿJ %)d'.{ͮfF 4E"(@P}*)([kvɯnc_3wN#>g_`+trŤ 9;qYq,Mtҧl1gJÔ||}bNfٓK#io$#+ɞ+aoIRFqvcGّgw'j"7D]\Ӵ. E]h29 %ǀfaEGEvXCTſV,hbsdEmU}|EX(" _o7ܵs4,Z ȧiA&7#e⤗8M'c0;8xW~0BK:֤"0 iB[˚"CāU\xge|?u2BPR k4Kw\^W. wr=|IZ4UJb{"2

如图,△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点H,AE=BE,试说明AH=2BD
如图,△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点H,AE=BE,试说明AH=2BD

如图,△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点H,AE=BE,试说明AH=2BD
证明:延长BE使HE=EF,连接AF
BE⊥AC,HE=EF,易知△AHF是等腰三角形
∠HAE=∠EAF,AH=AF
AD⊥BC,BE⊥AC
∠HDB=∠AEH=90°
因∠HBD+∠BHD=∠HAE+∠AHE=90°,
∠BHD=∠HAE
所以∠HBD=∠AHE又∠HAE=∠EAF
∠HBD=∠EAF,BE=AE,∠BEC=∠AEF=90°
RT△BEC≌RT△AEF(ASA)
BC=AF
AH=AF
BC=AH,BC=2BD
AH=2BD