在三角形abc中,BC=1,B=π/3,面积S=根号3 则TANC=

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 04:21:46
在三角形abc中,BC=1,B=π/3,面积S=根号3 则TANC=
xQj@h, %fݸ

在三角形abc中,BC=1,B=π/3,面积S=根号3 则TANC=
在三角形abc中,BC=1,B=π/3,面积S=根号3 则TANC=

在三角形abc中,BC=1,B=π/3,面积S=根号3 则TANC=
设三个角A、B、C对应的边分别为a、b、c,则
a=1
B=π/3
S=½acsinB=√3,所以c=4
根据三角形内角和定理,得
A+C=π-B=2π/3
根据正弦定理,得
a/sinA=c/sinC
asinC=csinA
sinC=4sin(2π/3-C)=4sin(C+π/3)=2sinC+2√3cosC
∴sinC=-2√3cosC
很明显,cosC≠0,两边同时除以cosC,得
tanC=-2√3

解析:∵S=BC*AB*sinB/2=AB*√3/4=√3,
∴AB=4
又AC^2=AB^2+BC^2-2AB*BC*cocB
=16+1-4=13
∴AC=√13
∵sinC/c=sinB/b,即sinC=csinB/b
∴sinC=(4*√3/2)/√13=2√39/13
cosC=(BC^2+AC^2-AB^2)/2BC*AC
=-√13/13
∴tanC=sinC/cosC=2√39/13/(-√13/13)
=-2√3