在三角形ABC中,角A、B、C所对的分别为a、b、c,已知asin²B/2+bsin²A/2=c/2(1)求证:a,b,c成等差数列(2)若a-b=4,△ABC三个内角的最大角为120°,求△ABC的面积S
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:19:07
在三角形ABC中,角A、B、C所对的分别为a、b、c,已知asin²B/2+bsin²A/2=c/2(1)求证:a,b,c成等差数列(2)若a-b=4,△ABC三个内角的最大角为120°,求△ABC的面积S
在三角形ABC中,角A、B、C所对的分别为a、b、c,已知asin²B/2+bsin²A/2=c/2
(1)求证:a,b,c成等差数列
(2)若a-b=4,△ABC三个内角的最大角为120°,求△ABC的面积S
在三角形ABC中,角A、B、C所对的分别为a、b、c,已知asin²B/2+bsin²A/2=c/2(1)求证:a,b,c成等差数列(2)若a-b=4,△ABC三个内角的最大角为120°,求△ABC的面积S
证明:
(1)
已知asin²(B/2)+bsin²(A/2)=c/2
∵cosB = 1-2 sin²(B/2)
∴sin²(B/2)=(1- cosB)/2
同理,
cosA = 1-2 sin²(A/2)
∴sin²(A/2 =(1- cosA)/2
∴asin²(B/2)+bsin²(A/2)= c/2
→a×(1- cosB)/2+b×(1- cosA)/2 = c/2
→a-a×cosB +b-b×cosA = c
a+b-c = a×cosB+ b×cosA
根据余弦定理,可得
cosB = (a2 + c2 - b2) / (2·a·c)
cosA = (c2 + b2 - a2) / (2bc)
代入到a+b-c = a×cosB+ b×cosA,得
a+b-c = a×[(a2 + c2 - b2) / (2·a·c)]+ b×[(c2 + b2 - a2) / (2bc)]
=( a2 + c2 - b2+c2 + b2 - a2)/2c
= 2 c2/2c
=c
a+b-c = c → a+b = 2c ∴ a,b,c成等差数列
(2)
(2)
∵a-b=4,可知,在△ABC中,a是∠A所对的边最大,
根据三角形中,大边对大角,
∴∠A=120°,∵a-b=4
∴b=a-4,
2c = a+b = a + a-4 =2a -4 ∴c=a-2;
代入余弦公式:
a²=b²+c²-2bc·cosA
= (a-4)²+(a-2)²-2×(a-4) ×(a-2)×cos120°
整理化简得a²-9a+14 =0
解得a =7 ,a= 2 ,当a = 2时,由c=a-2 = 0 ,无意义,
∴ a =7 b=a-4 = 7-4=3 c c=a-2 =7 -2 =5
b = 3 ,c =5
根据三角形的面积公式
S△ABC =(1/2)×b×c×sinA
=(1/2) ×3×7×sin120°
= (21/4)√3
∴S△ABC =(21/4)√3
1. 利用cos2α=cos²α-sin²α=1-2sin²α将左边的三角函数降次;
2. 再利用余弦公式把左边的余弦函数写成关于边的表达式;
3. 即可得2b=a+c;
4. 由题意知角A等于120°,b=a-4,c=a-8;
5. 代入余弦公式:a²=b²+c²-2bc·cosA,解未知数a;
...
全部展开
1. 利用cos2α=cos²α-sin²α=1-2sin²α将左边的三角函数降次;
2. 再利用余弦公式把左边的余弦函数写成关于边的表达式;
3. 即可得2b=a+c;
4. 由题意知角A等于120°,b=a-4,c=a-8;
5. 代入余弦公式:a²=b²+c²-2bc·cosA,解未知数a;
6. 利用面积公式S=1/2*bc*sinA求出面积。
收起