设a,b,c∈正实数且a+b=c‘求证:a2/3+b2/3>c2/3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:31:03
设a,b,c∈正实数且a+b=c‘求证:a2/3+b2/3>c2/3
xRN@b qaLWmDA)y4|Lә⪿<*R\@{&{ޫEw$(YM?u+xp(I"dW-hT\0+G8Fb`*2!ӰHq1į2Piȉ La_Vs3ǰ1}20|lf!s.¨B}Q _UZѡQ Q!ơY!y.vImdTD|9qS\kGRqQ')+~ y{|V'FTNk/??3%Rn9ScJܵy22d$̶(@q67.UNYdU(c/kG&BuP-nO#x

设a,b,c∈正实数且a+b=c‘求证:a2/3+b2/3>c2/3
设a,b,c∈正实数且a+b=c‘求证:a2/3+b2/3>c2/3

设a,b,c∈正实数且a+b=c‘求证:a2/3+b2/3>c2/3
证明:欲证a^2/3+b^2/3>c^2/3
两边立方,即证a^2+3a^(4/3)b^(2/3)+3a^(2/3)b^(4/3)+b^2>c^2
只需证(a+b)^2-2ab+3a^(4/3)b^(2/3)
+3a^(2/3)b^(4/3)+b^2>c^2
∵a+b=c,∴(a+b)^2=c^2
只需证
3a^(2/3)b^(2/3)[a^(2/3)+b^(2/3)]>2ab
只需证a^(2/3)+b^(2/3)>2/3*a^(1/3)b^(1/3)
∵a^(2/3)+b^(2/3)≥2a^(1/3)b^(1/3),(利用基本不等式)
∴a^(2/3)+b^(2/3)>2/3*a^(1/3)b^(1/3)成立,原不等式得证.

a^(2/3)+b^(2/3)>c^(2/3)
左右立方得到:a^2+3a^(4/3)b^(2/3)+3a^(2/3)b^(4/3)+b^2>c^2
化简得到:a^2+3ab((a/b)^(1/3)+(b/a)^(1/3))+b^2>c^2
由于a^2+3ab((a/b)^(1/3)+(b/a)^(1/3))+b^2>=a^2+6ab+b^2>a^2+2ab+b^2=(a+b)^2=c^2
所以倒推回去就得到a^(2/3)+b^(2/3)>c^(2/3)