已知a+b+c=0,a>b>c.求证a分之根号下(b方减ac)<根号下3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:29:34
已知a+b+c=0,a>b>c.求证a分之根号下(b方减ac)<根号下3
xU[s@+<9Ʉҩ3;O3Jh+Bog( m Bw<<>s=/1HਂƽU>ָw:JxgWOmRlawU06Y)"KCwZ3_(71Idj|=me$[es&y4e!~Q3f²HrM:q J7*YDU^x.i<FA@ew/U-5$.?L~j\u# ] &dfDzDI )' Ҭ?(ф@Ϛ@a7i 'fxè$#7k

已知a+b+c=0,a>b>c.求证a分之根号下(b方减ac)<根号下3
已知a+b+c=0,a>b>c.求证a分之根号下(b方减ac)<根号下3

已知a+b+c=0,a>b>c.求证a分之根号下(b方减ac)<根号下3
a+b+c=0,那么c=-a-c
a分之根号下(b方减ac)

a+b+c=0,a>b>c可以得到a,b,c中至少有一个正数和一个负数,而且a为正数,c为负数。同时-c=a+b
a分之根号下(b方减ac)=根号下(b方减ac)/a方=...=根号下【(b/a)平方+(b/a)+1】,根号下总共有三项,可以得到每一项都不会大于1,所以总体上小于根号3

首先,把式子两边平方就得到(b-ac)/(a^2)<3
把a^2移到不等号右边得到b-ac<3a^2
把ac移到不等号右边得到b<3a^2+ac
又a+b+c=0则b=-a-c故-a-c<3a^2+ac
即3a^2>-a-c-ac
又a>b>c 则这3个数中至少有一个是负数,就是c,且a一定为正数
3a^2>0是肯定 -a<0 -c>0 但是a>c ...

全部展开

首先,把式子两边平方就得到(b-ac)/(a^2)<3
把a^2移到不等号右边得到b-ac<3a^2
把ac移到不等号右边得到b<3a^2+ac
又a+b+c=0则b=-a-c故-a-c<3a^2+ac
即3a^2>-a-c-ac
又a>b>c 则这3个数中至少有一个是负数,就是c,且a一定为正数
3a^2>0是肯定 -a<0 -c>0 但是a>c 所以-a-c<0,ac<0
所以左边大于右边
证出来了。

收起

∵a+b+c=0,a>b>c
∴b=-(a+c),a>0>c
∴[√(b²-ac)]/a
=√{[(a+c)²-ac]/a²}
=√[(a²+ac+c²)/a²]
=√(1+c/a+c²/a²)
令c/a=t<0
则[√(b²-ac)]/a]
=√(t²+t+1)
=√[(t+1/2)²+3/4]≥√3/2
题目抄错了?

由a+b+c=0,且a>b>c可知,a>0,c<0,a+b=-c>0.故b²-ac>0,又a>0,===>2a>a.===>2a+b>a+b=-c>0,即有2a+b>0,a-b>0.===>(2a+b)(a-b)>0.===>2a²-ab-b²>0.===>b²+ab<2a².===>b²+a²+ab<3a².===>...

全部展开

由a+b+c=0,且a>b>c可知,a>0,c<0,a+b=-c>0.故b²-ac>0,又a>0,===>2a>a.===>2a+b>a+b=-c>0,即有2a+b>0,a-b>0.===>(2a+b)(a-b)>0.===>2a²-ab-b²>0.===>b²+ab<2a².===>b²+a²+ab<3a².===>b²+a(a+b)<3a².===>00<(b²-ac)/a²<3.===>√(b²-ac)/a<√3.

收起