正弦定理sinA/a=sinB/b=sinC/c=2R是怎么证明的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:34:00
正弦定理sinA/a=sinB/b=sinC/c=2R是怎么证明的
xT]kA+PQXvYoGڭ>JZ$FZX&m -iJ٤O Vl#T_Ν{g gOK _ D&܏6JxZ6+R,DL6/>7xv*|i}muqf:`]0atCn֛AW_Vr:"3g5[,TW> w%Qv$8ﳥ@IfLF ҆%1ܿleZ ΢ҫ^󏠇[!FTi;"a +l7zv|>KW 2=:EW}POJ`5{ _ pKkd V8 6a4ú^{ 1m2 yDhk%.B96sťbwvq=\DrSpܔ`f8f4s9c& ? V=Npey2yuZUTEv%I=BH"8Ea ŽI(d$ɵ"E 'H䨼,NP ؅fOv

正弦定理sinA/a=sinB/b=sinC/c=2R是怎么证明的
正弦定理sinA/a=sinB/b=sinC/c=2R是怎么证明的

正弦定理sinA/a=sinB/b=sinC/c=2R是怎么证明的
步骤1.
  在锐角△ABC中,设BC=a,AC=b,AB=c.作CH⊥AB垂足为点H
  CH=a·sinB
  CH=b·sinA
  ∴a·sinB=b·sinA
  得到
  a/sinA=b/sinB
  同理,在△ABC中,
  b/sinB=c/sinC 
步骤2.
  证明a/sinA=b/sinB=c/sinC=2R:
  如图,任意三角形ABC,作ABC的外接圆O. 
  作直径BD交⊙O于D. 
  连接DA. 
  因为直径所对的圆周角是直角,所以∠DAB=90度 
  因为同弧所对的圆周角相等,所以∠D等于∠C. 
  所以c/sinC=c/sinD=BD(直径)=2R