½(cos2B-cos2A)=sin(A+B)sin(A-B)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 02:47:24
½(cos2B-cos2A)=sin(A+B)sin(A-B)
x)SS6H/6rzD;j383OQIL:i$XΆD_l';Xu=zO?ٽiSV

½(cos2B-cos2A)=sin(A+B)sin(A-B)
½(cos2B-cos2A)=sin(A+B)sin(A-B)

½(cos2B-cos2A)=sin(A+B)sin(A-B)
这是一个公式.可以利用和差角公式进行证明,
(1/2)(cos2B-cos2A)
=(1/2){cos[(A+B)-(A-B)]-cos[(A+B)+(A-B)]}
=(1/2)[cos(A+B)cos(A-B)+sin(A+B)sin(A-B)]
 -(1/2)[cos(A+B)cos(A-B)-sin(A+B)sin(A-B)]
=(1/2)sin(A+B)sin(A-B)+(1/2)sin(A+B)sin(A-B)
=sin(A+B)sin(A-B)

左边=cos((A+B)-(A-B))-sin((A+B)+(A-B))=sin(A+B)sin(A-B)