求﹙1-22/1﹚﹙1-32/1﹚…﹙1-92/1﹚﹙1-102/1﹚的值.改为:求﹙1-1/4﹚﹙1-1/9﹚﹙1-1/16﹚…﹙1-1/81﹚﹙1-1/100﹚的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 01:23:24
求﹙1-22/1﹚﹙1-32/1﹚…﹙1-92/1﹚﹙1-102/1﹚的值.改为:求﹙1-1/4﹚﹙1-1/9﹚﹙1-1/16﹚…﹙1-1/81﹚﹙1-1/100﹚的值.
xT[n@|z&I,HJ6&)TVD$ vb^n< _Ǚ{\oUٜSV{5PaUbK1Ȝ(͓UM M3 ܄ÐMGZ/YoYꜤ8OY :>mAsZ&=Uw`麇Y݀; {\̦b].5u whLMåG9&G}©Gv-:!>< Z\4ir &䚄4d@4Ӄb:)/~7h\]xl1@B*O^A ́B$_͓i\gI7?ElNE&27_>A@ S\:{m[ak0Q[ ~A7OQ

求﹙1-22/1﹚﹙1-32/1﹚…﹙1-92/1﹚﹙1-102/1﹚的值.改为:求﹙1-1/4﹚﹙1-1/9﹚﹙1-1/16﹚…﹙1-1/81﹚﹙1-1/100﹚的值.
求﹙1-22/1﹚﹙1-32/1﹚…﹙1-92/1﹚﹙1-102/1﹚的值.
改为:求﹙1-1/4﹚﹙1-1/9﹚﹙1-1/16﹚…﹙1-1/81﹚﹙1-1/100﹚的值.

求﹙1-22/1﹚﹙1-32/1﹚…﹙1-92/1﹚﹙1-102/1﹚的值.改为:求﹙1-1/4﹚﹙1-1/9﹚﹙1-1/16﹚…﹙1-1/81﹚﹙1-1/100﹚的值.
11/20
方法一:(1-1/4)=1-(1/2)2 =(1+1/2)(1-1/2) (1-1/9)=1-(1/3)2=(1+1/3)(1-1/3)
(1-1/16)=1-(1/4)2=(1+1/4)(1-1/4)以此类推(1-1/100)=1-(1/10)2=(1+1/10)(1-1/10)
即3/2*1/2*3/4*2/3*5/4*3/4*6/5*4/5*7/6*5/6*8/7*6/7*9/8*7/8*10/9*8/9*11/10*9/10
中间很多数都可以约分约掉 最后就只剩下1/2和11/10 他们两个相乘便可得到最后答案11/20
方法二:1-1/n^2=[n^2-1]/n^2=[(n-1)/n][(n+1)/n]
(1-1/2^2)(1-1/3^2)(1-1/4^2).(1-1/10^2)
=(1/2*3/2)*(2/3*4/3).(9/10*11/10)
=(1/2*2/3*3/4...9/10)(3/2*4/3*...*11/10)
=1/10*11/2
=11/20
方法三:n^2 表示 n的平方.
因为 1 -(1/n)^2 = (1 -1/n) (1 +1/n)
= [ (n-1)/n ] *[ (n+1)/n ],
(n>=2),
所以 原式= (1/2) (3/2) (2/3) (4/3) (3/4) (5/4) ...(9/10) (11/10)
= 11/20.
分解因式:
a^2 -b^2 =(a+b)(a-b).