角ABC中,角A,角B,角C的对边分别是a,b和c,COSC/COSA= - 3c/3a+2根号3b 求角C的度数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 18:41:26
角ABC中,角A,角B,角C的对边分别是a,b和c,COSC/COSA= - 3c/3a+2根号3b 求角C的度数
xAK0J-ۈv}@p誠mV'ºYcIey𠗏@}7zyԳvL$KU{_nKt3a>*bڻ EȆX&(@4Bǀ՘ | $rh83_u#' @A5 HMSt Ȓ@h aB|ڥC>]9RקaЕZfs_-4UJ_?Ivs ͪt"|\xzuϢ :G_η86.¦T50 ̸r!`0`rBx

角ABC中,角A,角B,角C的对边分别是a,b和c,COSC/COSA= - 3c/3a+2根号3b 求角C的度数
角ABC中,角A,角B,角C的对边分别是a,b和c,COSC/COSA= - 3c/3a+2根号3b 求角C的度数

角ABC中,角A,角B,角C的对边分别是a,b和c,COSC/COSA= - 3c/3a+2根号3b 求角C的度数
根据余弦定理:cosC = (a^2 + b^2 - c^2) / (2ab)
cosA = (c^2 + b^2 - a^2) / (2bc)
等式两端相除可得:
cosC/cosA={(a^2 + b^2 - c^2) / (2?b)}/{(c^2 + b^2 - a^2) / (2?c)}
整理得:
cosC/cosA={c(a^2 + b^2 - c^2)}/{b(c^2 + b^2 - a^2)}
由已知可得:cosC/cosA=-3c/(3a+2b√3)
所以有:-3c/(3a+2b√3) ={c(a^2 + b^2 - c^2)}/{b(c^2 + b^2 - a^2)}
整理得:(a^2 + b^2 - c^2)/ab=√3
cosC=( a^2 + b^2 - c^2)/2ab
=√3/2
所以角C为30度