在△ABC中,角A,B,C的对边分别为a,b,c,且(2b-√3c)/√3a=cosC/cosA.(1)求角A的值;(2)若角B=π/6,BC边上的中线AM=√7,求△ABC的面积.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:46:01
在△ABC中,角A,B,C的对边分别为a,b,c,且(2b-√3c)/√3a=cosC/cosA.(1)求角A的值;(2)若角B=π/6,BC边上的中线AM=√7,求△ABC的面积.
xՑN@_Gq$zlE p$F@&bb;xg۠'Oz;;;}Պ9z 1Xa4r`w3.1vf;iWH?0b::r1:C;" Go4OPn9vxOk򗘱+Ŝo&+nx6`uU`&V0ƕ~w ^OPeyJBK,0\$tWp*إ1 }X`coL^L28@'m$tBKF!'

在△ABC中,角A,B,C的对边分别为a,b,c,且(2b-√3c)/√3a=cosC/cosA.(1)求角A的值;(2)若角B=π/6,BC边上的中线AM=√7,求△ABC的面积.
在△ABC中,角A,B,C的对边分别为a,b,c,且(2b-√3c)/√3a=cosC/cosA.
(1)求角A的值;
(2)若角B=π/6,BC边上的中线AM=√7,求△ABC的面积.

在△ABC中,角A,B,C的对边分别为a,b,c,且(2b-√3c)/√3a=cosC/cosA.(1)求角A的值;(2)若角B=π/6,BC边上的中线AM=√7,求△ABC的面积.
根据正弦定理,a=2RsinA,b=2RsinB,c=2RsinC,代入已知的式子,整理有,2sinB*cosA=√3sin(A+C)=√3sinB,即cosA=√3/2,所以A=π/6
设AC=2x,易知CM=x,根据余弦定理,可求出x=1,三角形面积S=1/2AC*BC*sin2π/3=√3