将f(x)=1/(x^2-1)展开为x的幂级数,并求其收敛域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 00:49:01
将f(x)=1/(x^2-1)展开为x的幂级数,并求其收敛域
xPMk@+{u҃%=" @ͫ^#Nr/tvbۛyoޛŰzGJ.BqXp\6-|ՅmY0.ײgX;y͸bsuYD+Lx*~ m?ldKar^ !f=d`Dz;&1b)\@[Nc0]ōR?dCEm9lO_⍩EQN

将f(x)=1/(x^2-1)展开为x的幂级数,并求其收敛域
将f(x)=1/(x^2-1)展开为x的幂级数,并求其收敛域

将f(x)=1/(x^2-1)展开为x的幂级数,并求其收敛域
f(x)=1/(x^2-1)=1/2[1/(x-1) -1/(x+1)]=-1/2[-1/(x-1) +1/(x+1)]
1/(1-x) 展开为∑x^n
1/(x+1)展开为∑(-1)^n *x^n n从0开始
相加得=-1/2[∑x^n +∑(-1)^n *x^n ]=-∑x^(2n)
收敛域为(-1,1)

f(x)=-1/(1-x^2)=-∑(x^2)^n=-∑x^2n
|an+1/an|=x^(2n+2)/x^2n=x^2<1
求得-1