方程x^3-lgx=0在区间(0,10)上的实数解的个数为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 04:26:56
方程x^3-lgx=0在区间(0,10)上的实数解的个数为
xTMsP+ 3$M:a:n-K ttKcI ȟy%//>Î{ν =ᱹW.֪BŦHK _ѳiz{$g.zEU}cuu3i/IȰa^LZ+NWeg5M#Np/uN{2H" ?9+/*zv=]o>`/Y8S擄Z24ZHL]E73Kg0Ix{|x7ڗ̂g!OYl=+jdPАʌ)Iɍ/}ddUΪ31 Oחdyܹ)GcOZr[qAcS_8h.E.ۂmѾـcU(2B*Jnm QDR-Bx; av?"k/?4}sᱮ/iÅߓO8 "!c <#3 Զ+ TaV

方程x^3-lgx=0在区间(0,10)上的实数解的个数为
方程x^3-lgx=0在区间(0,10)上的实数解的个数为

方程x^3-lgx=0在区间(0,10)上的实数解的个数为
通过画图可知,当X为1是,lg函数为0,三次方函数为1,此后三次方函数变化更大,因此交点个数为0

x^3在(0,1)恒大于lgx
且x^3在(1,10)恒大于1
而lgx在区间(1,10)恒小于1
所以无解

会求导不?
记函数f(x)=x^3-lgx
f'(x)=3x^2-1/(xln10)=(3x^3-1/ln10)/x
令上式等于0,
x^3=1/(3ln10)
在这个点x=三次根号(1/3ln10)之前是减函数,在这儿之后是增函数
在这点,f(x)有它最小值,1/(3ln10)-(1/3)lg(1/(3ln10))
已知1/(3ln10)是...

全部展开

会求导不?
记函数f(x)=x^3-lgx
f'(x)=3x^2-1/(xln10)=(3x^3-1/ln10)/x
令上式等于0,
x^3=1/(3ln10)
在这个点x=三次根号(1/3ln10)之前是减函数,在这儿之后是增函数
在这点,f(x)有它最小值,1/(3ln10)-(1/3)lg(1/(3ln10))
已知1/(3ln10)是正数, lg(1/(3ln10))是负数,所以此时f(x)是正数
这意味着函数是一直是正数,与x轴无交点
也就是原方程无根

收起