对任意实数x,y,多项式x²-6y+9y²-4x+6的值总是正数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 20:40:15
对任意实数x,y,多项式x²-6y+9y²-4x+6的值总是正数
x){~ݻ?]7 ::Ozp=jʆֺfږPIY-ODvXi3 74vjik1NɎ] sNxrNXlNOvEDBlgvg Ov/=H@@Y y%ˁ>nh\kgvﳩJApV/

对任意实数x,y,多项式x²-6y+9y²-4x+6的值总是正数
对任意实数x,y,多项式x²-6y+9y²-4x+6的值总是正数

对任意实数x,y,多项式x²-6y+9y²-4x+6的值总是正数
x²-6y+9y²-4x+6=x²-4x+4-4+9y²-6y+1-1+6=(x-2)²+(3y-1)²+1>=1
其中(x-2)²>=0 (3y-1)²>=0

对其原式因式分解可得:x²-6y+9y²-4x+6=(x-2)^2+(3y-1)^2+1
因为式子里面只含有关于X,Y的平方项,所以对任意的实数X,Y,原式的值都大于1。

x²-6y+9y²-4x+6=(x-2)^2+(3y-1)^2+1>0
故对任意实数x,y,多项式x²-6y+9y²-4x+6的值总是正数