设实数xy满足x+y-3≤0,y-x/2≥0,x-1≥0,则求u=y/x-x/y的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:07:33
设实数xy满足x+y-3≤0,y-x/2≥0,x-1≥0,则求u=y/x-x/y的取值范围
x͑j@_ 1>IEZ [6m$hB "JDb ]$'_UK^v7ì4i ӏ7hehSU[{O|޺R;ʆmpp=x ZS4=aDxJ9D?DT98}Yd>,!gU}\ߏq,XkϢF4QYp;5.je4K0dq HKHZ^?tz sVuwÔ^pvW+rru\~E$." !};*'[STˆrӼ2OVz

设实数xy满足x+y-3≤0,y-x/2≥0,x-1≥0,则求u=y/x-x/y的取值范围
设实数xy满足x+y-3≤0,y-x/2≥0,x-1≥0,则求u=y/x-x/y的取值范围

设实数xy满足x+y-3≤0,y-x/2≥0,x-1≥0,则求u=y/x-x/y的取值范围
设实数xy满足x+y-3≤0,y-x/2≥0,x-1≥0,则求u=y/x-x/y的取值范围
x+y-3≤0.(1)
y-(x/2)≥0,.(2)
x-1≥0.(3)
化出三条直线:x+y-3=0;y-(x/2)=0;x-1=0;三条直线的交点意次为A(1,2);B(1,1/2);
C(2,1);动点(x,y)就在以这三点为顶点的△ABC内(含边界).
不难看出:1/2≤y/x≤2,2≥y/x≥1/2;
两式相减即得 -3/2≤y/x-x/y≤3/2.