设a为常数,函数f(x)=x²+x+(x+1)|x-a|.(1)当a=0时,求函数f(x)的值域(2)当x≥a时,解不等式f(x)≥0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 06:29:17
x){n_l{TFmvFfMnb=t>;9m:66!R7I*'`-D( 4Lb).5` 5AFA cdk
4t
MbZlu ۢ&#ED[]gӀuMmZ
I
=%Ozn{{f$ف D.(
设a为常数,函数f(x)=x²+x+(x+1)|x-a|.(1)当a=0时,求函数f(x)的值域(2)当x≥a时,解不等式f(x)≥0
设a为常数,函数f(x)=x²+x+(x+1)|x-a|.
(1)当a=0时,求函数f(x)的值域
(2)当x≥a时,解不等式f(x)≥0
设a为常数,函数f(x)=x²+x+(x+1)|x-a|.(1)当a=0时,求函数f(x)的值域(2)当x≥a时,解不等式f(x)≥0
1)a=0,f(x)=x(x+1)+(x+1)|x|=(x+1)(x+|x|)
当x>=0时,有f(x)=2x(x+1)=2[(x+1/2)^2-1/4]>=0
当x=a时,有f(x)=x(x+1)+(x+1)(x-a)=(x+1)(2x-a)>=0
若a=-1或x=a,故有x>=-1或a==a,因此再细分为:
-2