若lim [sin6x+xf(x)]/x^3=0,则lim [6+f(x)]/x^2是多少?(x是趋近0)可答案是36

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:36:17
若lim [sin6x+xf(x)]/x^3=0,则lim [6+f(x)]/x^2是多少?(x是趋近0)可答案是36
xSQkP+06&&>ܤ]kL: I:a 8̡VYԿMrƚ}1I=w=晓nn! X{)NQ$|{߿>fMF>wg'ћ;ŤFNؖϬ[̞ȨrN.`G2r .|'pHFb2Fp,rLl4w Q$ @i`b\ $n311^1TQm$1FƗTD9ĉGE=m9%AńşB!Ŕ4 x34PPID(IR^yۓaxzc|S<+D35Lηh%DcqTIH"oEٮ,a G MW)=Oͬ_U4M>}?nkC7-7 . ef]!5]v|ZP;-:V

若lim [sin6x+xf(x)]/x^3=0,则lim [6+f(x)]/x^2是多少?(x是趋近0)可答案是36
若lim [sin6x+xf(x)]/x^3=0,则lim [6+f(x)]/x^2是多少?(x是趋近0)
可答案是36

若lim [sin6x+xf(x)]/x^3=0,则lim [6+f(x)]/x^2是多少?(x是趋近0)可答案是36
答:(x→0)lim[sin6x+xf(x)]/x^3=0
属于0-0型,可以应用洛必答法则:(x→0)lim[6cos6x+f(x)+xf'(x)]/(3x^2)=0
(x→0)lim[-36sin6x+f'(x)+f'(x)+xf''(x)]/(6x)=0
(x→0)lim[-216cos6x+2f''(x)+f''(x)+xf'''(x)]/6=0
所以,x→0时:
3f''(x)+xf'''(x)=216
3f''(x)=216
f''(x)=72
所以:(x→0)lim[6+f(x)]/x^2
=(x→0)lim[f'(x)/(2x)]
=(x→0)lim[f''(x)/2]
=72/2
=36

lim(x->0) [sin6x+xf(x)]/x^3 (0/0)
=lim(x->0) [6cos6x+xf'(x)+f(x)]/(3x^2) (0/0)
=> f(0) = -6
lim(x->0) [6cos6x+xf'(x)+f(x)]/(3x^2) (0/0)
=lim(x->...

全部展开

lim(x->0) [sin6x+xf(x)]/x^3 (0/0)
=lim(x->0) [6cos6x+xf'(x)+f(x)]/(3x^2) (0/0)
=> f(0) = -6
lim(x->0) [6cos6x+xf'(x)+f(x)]/(3x^2) (0/0)
=lim(x->0) [-36sin6x+xf''(x)+2f'(x)]/(6x) (0/0)
=> f'(0)= 0
lim(x->0) [-36sin6x+xf''(x)+2f'(x)]/(6x) (0/0)
=lim(x->0) [-216cos6x+xf'''(x)+3f'(x)]/6 =0
=>-216+ 3f''(0) =0
f''(0) = 72
lim(x->0) [6+f(x)]/x^2 (0/0)
=lim(x->0) f'(x)]/(2x) (0/0)
=lim(x->0) f''(x)/2
=f''(0)/2
=72/2
=36

收起

求极限当x→0若lim[sin6x+x f(x)]/x3=0,求lim[6+ f(x)]/x2若lim[sin6x+xf(x)]/x3=0,求lim[6+ f(x)]/x2x→0 x→0 若极限lim(x-0)[sin6x+xf(x)]/x^3=0,则lim(x-0)[6+f(x)]/x^2=? 若lim [sin6x+xf(x)]/x^3=0,则lim [6+f(x)]/x^2是多少?(x是趋近0)可答案是36 x趋于0,lim x-o ( sin6x+xf(x))/x3=0 ,lim x-o (6+f(x))/x2=? 求极限(无穷小量代换)若 lim (x→0)[sin6x+xf(x)]/x^3=0,则lim(x→0)[6+f(x)]/x^2=( )这样用无穷小量代换怎么不可以呢lim (x→0)[sin6x+xf(x)]/x^3= lim(x→0)[6x+xf(X)]/x^3= lim(x→0)[6+f(x)]/x^2=0和标准答案结果不同,标 求极限当x→0若lim[sin6x+xnbsp;f(x)]/x3=0,求lim[6+nbsp;f(x)]/x2若lim[sin6x+xf(x)]/x3=0,求lim[6+nbsp;f(x)]/x2nbsp;nbsp;x→0nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;x→0 已知lim x→0 [sin6x+xf(x)]/x^3=0,求 lim x→0 [6+f(x)]/x^2?为什么不可以这样解 因为lim x→0 [sin6x/(6x)]=1所以,lim x→0 [sin6x+xf(x)]/x^3=lim x→0 [6x+xf(x)]/x^3=lim x→0 [6+f(x)]/x^2=0这哪里错了? 假设lim(x趋于0)[(sin6x+xf(x))/x^3]=0,则lim(x趋于0)[(6+f(x))/x^2]=?, lim(x趋近于0)[sin6x+xf(x)]/x^3=0,则lim(x趋近于0)[6+f(x)]/x^2=?rt lim x→0 [sin6x+xf(x)]/x^3=0,求 lim x→0 [6+f(x)]/x^2 求老师 这个是 利用极限与无穷小的 关系求极限若lim(x→0)(sin6x+xf(x))/x^3=o 则lim(x→0)(6+f(x))/x^2为 但我 算的是0 对于 lim(x→0)(sin6x+xf(x))/x^3=o 等式左边 上下同除以x 不就得到 lim(x→0)( 设x->0时,lim((sin6x+xf(x))/x^3)=0,求x->0时,lim((6+f(x))/x^2).不敢肯定,可以用等价无穷小代换后把x约掉吗?用微分中值定理又怎么做? lim x→0 [sin6x+xf(x)]/x^3 第一步可以分开求1.sin6x/x^3 和 2.xf(x)/x^3 的和吗并且极限在什么情况下可以分开求,什么情况下不能,最好可以举例说明, 求极限lim(x->0)(sin6x-6x)/x^3,自学中求助:求极限lim(x->0) (sin6x-6x) / x^3 lim(x趋于0)(sin6x-xf(x))/x^3=0,求lim(x趋于哦0)(6-xf(x))/x^2.这题是我搜到的类似的题目,只是我的题目中多了个x,是不是我的题目错了 求极限当x→0若lim[sin6x+x f(x)]/x^3=0,求lim[6+ f(x)]/x^2答案不重要.我只想知道为什么对第一个式子上下同除以x,为什么会是错的,错在哪,兄弟,我想问的是如果把[sin6x+x f(x)]/x,x^3/x (即同除以x)第一 已知lim(x→0)[sin6x–f(x)tanx]/x=0,求lim(x→0)[6-f(x)]/x 已知{limx趋近0 [(sin6x)+xf(x)]/x^3}=0 求limx趋近0 [6+f(x)]/x^2=?答案是36.