请问为什么(1-sinx)/cosx = tan(x/2)?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 07:06:20
请问为什么(1-sinx)/cosx = tan(x/2)?
xSn@YJ46QS]I5jtQw4U_à^f64$ps9(hW nAך75[!zFjUjʅy}KIdS;NU}AGK#F@eDXIJIWÝ7'ޟ@ " Dc*2H4G $y .V񟍰.ۡXCRL=S CYjbk%;]?SoI_2Yk

请问为什么(1-sinx)/cosx = tan(x/2)?
请问为什么(1-sinx)/cosx = tan(x/2)?

请问为什么(1-sinx)/cosx = tan(x/2)?
错了.
(1 -sinx)/cosx = [ 1 -tan (x/2) ] / [ 1 +tan (x/2) ].
应该是:
(1 -cos x) /sin x = tan (x/2),
或:
sin x /(1 +cos x) = tan (x/2).
= = = = = = = = =
1.(1 -cos x) /sin x = tan (x/2).
证明:因为 cos x =1 -2 [ sin (x/2) ]^2,
sin x = 2 sin (x/2) cos (x/2),
所以 (1 -cos x) /sin x = 2 [ sin (x/2) ]^2 / [ 2 sin (x/2) cos (x/2) ]
= sin (x/2) / [ cos (x/2) ]
= tan (x/2).
= = = = = = = = =
2.sin x /(1 +cos x) = tan (x/2).
证明:因为 sin x = 2 sin (x/2) cos (x/2),
cos x = 2 [ cos (x/2) ]^2 -1,
所以 sin x /(1 +cos x) = ...=tan (x/2).
= = = = = = = = =
同理,
(1 +cos x) /sin x =sin x /(1 -cos x) = cot (x/2).
cos x = [ cos (x/2) ]^2 -[ sin (x/2) ]^2
= 1 -2 [ sin (x/2) ]^2
= 2 [ cos (x/2) ]^2 -1,
公式的选取很关键.

1-sinx=sinx/2sinx/2+cosx/2cosx/2-2sinx/2cosx/2
cosx=cosx/2cosx/2-sinx/2sinx/2
分子分母同除以cosx/2cosx/2,得到
(tanx/2tanx/2+1-2tanx/2)/(1-tanx/2)=1-tanx/2的绝对值