RT△ABC中,角C=90°,AB,BC,CA的长分别为a,c,b,求△ABC的内切圆半径r

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 23:11:58
RT△ABC中,角C=90°,AB,BC,CA的长分别为a,c,b,求△ABC的内切圆半径r
xTkPW`&M" I'!{t:kV烰1MD20nSf֧ 5A{wr%Gn{h晑QHӑn Cl冿>F Gcᯭݺfp{ Qlv%{[Z^CD{&l*3LRY)Ιגid2b Ėd:DV$qR,uF-.R ϶

RT△ABC中,角C=90°,AB,BC,CA的长分别为a,c,b,求△ABC的内切圆半径r
RT△ABC中,角C=90°,AB,BC,CA的长分别为a,c,b,求△ABC的内切圆半径r

RT△ABC中,角C=90°,AB,BC,CA的长分别为a,c,b,求△ABC的内切圆半径r
方法一:
如图设内切圆圆心为O,三个切点为D、E、F,连接OD、OE
显然有OD⊥AC,OE⊥BC,OD=OE
所以四边形CDOE是正方形
所以CD=CE=r
所以AD=b-r,BE=a-r,
因为AD=AF,CE=CF
所以AF=b-r,CF=a-r
因为AF+CF=AB=r
所以b-r+a-r=r
内切圆半径r=(a+b-c)/2
即内切圆直径L=a+b-c
方法二:
如图设内切圆圆心为O,三个切点为D、E、F,连接OD、OE、OF,OA、OB、OC
显然有OD⊥AC,OE⊥BC,OF⊥AB
所以S△ABC=S△OAC+S△OBC+S△OAB
所以ab/2=br/2+ar/2+cr/2
所以r=ab/(a+b+c)
=ab(a+b-c)/(a+b+c)(a+b-c)
=ab(a+b-c)/[(a+b)^2-c^2]
因为a^2+b^2=c^2
所以内切圆半径r=(a+b-c)/2
即内切圆直径L=a+b-c