已知:AB//CD,求证:∠D+∠B+∠BED=360度(至少用三种方法)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:37:26
已知:AB//CD,求证:∠D+∠B+∠BED=360度(至少用三种方法)
xkN@Ic L]!/Q"E(mIX _lۙCdf=ܯx:I_h1Ɋ$PyݧQ`QآbI/IbӠ79d9gWץtR$n ¡;p IS'022,DCu)$Ka tجrbZ6Luo .5cˋP9OФZ |N0

已知:AB//CD,求证:∠D+∠B+∠BED=360度(至少用三种方法)
已知:AB//CD,求证:∠D+∠B+∠BED=360度(至少用三种方法)

已知:AB//CD,求证:∠D+∠B+∠BED=360度(至少用三种方法)
证明:(1)连接BD,如图,
∵AB‖CD(已知),
∴∠ABD+∠CDB=180°(两直线平行,同旁内角互补).
∵∠1+∠2+∠BED=180°(三角形内角和为180°),
∴∠ABD+∠1+∠CDB+∠2+∠BED=360°,
即∠ABE+∠CDE+∠BED=360°.
(2)延长DE交AB延长线于F,如图
∵AB‖CD(已知),
∴∠F+∠D=180°(两直线平行,同旁内角互补).
∵∠ABE=∠FEB+∠F,
∠BED=∠FBE+∠F(三角形一个外角等于和它不相邻的两个内角的和)
∴∠ABE+∠CDE+∠BED
=∠FEB+∠F+∠CDE+∠FBE+∠F
=180°+180°
=360°.
(3)过点E作EF‖AB,如图
∵AB‖CD,
∴AB‖EF‖CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)
∴∠B+∠BEF=180°
∠D+∠DEF=180°(两直线平行,同旁内角互补)
∴∠B+∠BEF+∠D+∠DEF
=180°+180°
=360°.