设a,b,c是不同的实数,证明:((2a-b)/(a-b))^2+((2b-c)/(b-c))^2+((2c-a)/(c-a))^2≥5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 16:45:29
设a,b,c是不同的实数,证明:((2a-b)/(a-b))^2+((2b-c)/(b-c))^2+((2c-a)/(c-a))^2≥5
xSO1*=fH1:"LR9.-V[ԺZAقmWڡ~L~_ZPؓ{H^~i˭.&<}FZ~,Ʒ\]lJYO<8d}tȀ*A?Ճv{C-U",)6+qBFј&T]op$q[ ~eؒ\\p٭ᜅReCmy6"&g +%T4ēx1Lh U̿ͱ`cCտaJ?O٪11l9ģsWQB$6(>z@[vb:DEسxK)&_}*>^B ߆7A 4J.j&N17ZwtG ~

设a,b,c是不同的实数,证明:((2a-b)/(a-b))^2+((2b-c)/(b-c))^2+((2c-a)/(c-a))^2≥5
设a,b,c是不同的实数,证明:((2a-b)/(a-b))^2+((2b-c)/(b-c))^2+((2c-a)/(c-a))^2≥5

设a,b,c是不同的实数,证明:((2a-b)/(a-b))^2+((2b-c)/(b-c))^2+((2c-a)/(c-a))^2≥5
定理 设实数x,y,z满足 yz+zx+xy=x+y+z+t,则有
(x-k)^2+(y-k)^2+(z-k)^2≥2k^2-2k-1-2t (1)
定理证明 (1)式展开为
k^2-2k(x+y+z-1)+x^2+y^2+z^2+2t+1≥0
k^2-2k(x+y+z-1)+(x+y+z)^2-2(x+y+z)+1≥0
k^2-2k(x+y+z-1)+(x+y+z-1)^2≥0
[k+1-(x+y+z)]^2≥0.
下面运用定理来证明不等式.
设a,b,c是互不相同的实数.试证
[(2a-b)/(a-b)]^2+[(2b-c)/(b-c)]^2+[(2c-a)/(c-a)]^2≥5 (2)
(2)
[a/(a-b)+1]^2+[b/(b-c)+1]^2+[c/(c-a)+1]^2≥5
令x=a/(a-b),y=b/(b-c),z=c/(c-a).
易验证 yz+zx+xy+1=x+y+z.
故定理中取k=-1,t=-1,得
(x+1)^2+(y+1)^2+(z+1)^2≥2(-1)^2+2-1+2=5.
不等式(2)得证.