设f(x)=-1/3x的3次方+1/2x的平方+2ax,若f(x)在(2/3,正无穷)上存在单调递增区间,求a取值范围,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 10:44:56
设f(x)=-1/3x的3次方+1/2x的平方+2ax,若f(x)在(2/3,正无穷)上存在单调递增区间,求a取值范围,
xRN@P1J@ M(H+⿐iB^wΝ Bp܅#D7R^:<yK7n > ڤ?9m*Cdf&d2> 2U#^/*B _4tˉG3 鲶F*9;TDzqb#QkLCjJfY} ?nvqnf=u-r̶fsM(We#.'(ȿ%ҐsmQCJbt̬ 1FLY[(8Rz-SzGq㍚Fgm2Uڭu'wQڈR~[ȖXD g6?;5

设f(x)=-1/3x的3次方+1/2x的平方+2ax,若f(x)在(2/3,正无穷)上存在单调递增区间,求a取值范围,
设f(x)=-1/3x的3次方+1/2x的平方+2ax,若f(x)在(2/3,正无穷)上存在单调递增区间,求a取值范围,

设f(x)=-1/3x的3次方+1/2x的平方+2ax,若f(x)在(2/3,正无穷)上存在单调递增区间,求a取值范围,
函数f(x)=(1/3)x³+(1/2)x²+2ax.
求导,f'(x)=x²+x+2a.
由题设可知:
关于x的不等式x²+x+2a≥0.
其解集M与区间(2/3, +∞)的交集非空.
或者说,不等式2a≥-(x²+x)
必有解在区间(2/3, +∞)内.
∴问题可化为,求函数g(x)=-x²-x在(2/3, +∞)上的最大值(或上确界).
显然,在(2/3, +∞)上,恒有:g(x)<g(2/3)=-10/9.
∴应有:2a≥-10/9
∴a≥-5/9