已知函数1/2ax^2+lnx,其中a属于R,问若F(x)在(0,1]上的最大值是-1,求a的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:07:33
已知函数1/2ax^2+lnx,其中a属于R,问若F(x)在(0,1]上的最大值是-1,求a的值
xՑ1K@ʍ)I$sF f*!rnAFETcI@-uEk, 8/xImSy3 oi؁I`|Ӑ6W1J' _+^~Yx ڏit: ]pYՕlVpPv/}\b?^ K$o a9&WhYkDqi(0ZahJܛd\KTE²/5༙.ŷHT3B('KP[ nK*"QM0~Y{"a cbUet

已知函数1/2ax^2+lnx,其中a属于R,问若F(x)在(0,1]上的最大值是-1,求a的值
已知函数1/2ax^2+lnx,其中a属于R,问若F(x)在(0,1]上的最大值是-1,求a的值

已知函数1/2ax^2+lnx,其中a属于R,问若F(x)在(0,1]上的最大值是-1,求a的值
已知函数1/2ax^2+lnx,其中a属于R,问若F(x)在(0,1]上的最大值是-1,求a的值
解析:∵函数f(x)=1/2ax^2+lnx,其定义域为x>0
当a=0时,f(x)=lnx,f(x)在(0,1]上的最大值是0
当a>0时,f(x)= 1/2ax^2+lnx,f(x)在(0,1]上的最大值是0
f’(x)=ax+1/x>0
∴函数f(x)在定义域内单调增;
当ax^2=-1/a==>x=√(-1/a)
f’’(x)=a-1/x^2 ln(-a)=1==>a=-e

y = ax^2 /2 + lnx
a = - e