用数学归纳法证明:(1)4^(2n+1)+3^(n+2)能被13整除(2)2^(n+2)·3^n+5n+21能被25整除
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:15:50
x[N@vpIL D_I%"7ri1q-iybPW9Oy^{:SJ^8Sǎb!"W,D`
n0E PJ,1[٬X1mf34Ϙ8RĤ ff2H\fJ4$x}䗻`Z!"CQ]U9ZxW{0+{%KHs""X@Tj8)5jt*h ML@k B]^{sg]n;xC϶e\
?#*%Ѱq-#Sܴ}/
用数学归纳法证明:(1)4^(2n+1)+3^(n+2)能被13整除(2)2^(n+2)·3^n+5n+21能被25整除
用数学归纳法证明:(1)4^(2n+1)+3^(n+2)能被13整除(2)2^(n+2)·3^n+5n+21能被25整除
用数学归纳法证明:(1)4^(2n+1)+3^(n+2)能被13整除(2)2^(n+2)·3^n+5n+21能被25整除
证明:
(1)N=1:
4^(2+1)+3^(1+2)=64+27=91=7*13
显然能够被13整除.
(2)假设N=K时,原式能够被13整除.
那么当N=K+1时有:
4^[2(k+1)+1]+3^(k+1+2)=4^(2k+3)+3^(k+3)=4^(2k+1)*16+3^(k+2)*3=4^(2k+1)*(13+3)+3^(k+2)*3
=13*4^(2k+1)+3*4^(2k+1)+3*3^(k+2)
=13*4^(2k+1)+3*[4^(2k+1)+3^(k+2)]
因为:4^(2k+1)+3^(k+2)能够被13整除,
所以,上式也能够被13整除.
综上所述,4的(2n+1)次方+3的(n+2)次方能被13整除
用数学归纳法证明1+n/2
一道数学归纳法证明题用数学归纳法证明1+n/2
数学归纳法证明,求助用数学归纳法证明:[13^(2n)-1] Mod 168=0
用数学归纳法证明:an=1/(n^2+n)
数学归纳法证明 < {(n+1)/2 }的n 次方
用数学归纳法证明ln(n+1)
用数学归纳法证明:1²+2²+...+n²=n(n+1)(2n+1)/6 (n是正整数)请用数学归纳法证明,
用数学归纳法证明(1) 2^n>n^4(2) (1+1/n)^n<n
用数学归纳法证明:2≤(1+1/n)^n<3(n∈N)
证明2^n>2n+1 (n>=3,n为自然数),用数学归纳法
用数学归纳法证明1+4+9+...+n²=1/6n(n+1)(2n+1)
用数学归纳法证明1+4+7+...+(3n-2)=[n(3n-1)]/2
用数学归纳法证明1+2+3+…+2n=n(2n+1)
用数学归纳法证明恒等式:1+2+3+...+n^2 = (n^4+n^2)/2
用数学归纳法证明(2^3n)-1 (n属于N*)能被7整除
用数学归纳法证明:1³+2³+3³...+n³=n²(n+1)²/4=(1+2+3+...+n)² .(n是正整数)请用数学归纳法证明,
用数学归纳法证明:1³+2³+3³...+n³=n²(n+1)²/4=(1+2+3+...+n)² .(n是正整数)请用数学归纳法证明,
求证题用数学归纳法证明:1³+2³+3³...+n³=n²(n+1)²/4=(1+2+3+...+n)² .(n是正整数)请用数学归纳法证明,