若x.y是实数,且m=x^2-4xy+6y^2-4x-4y,求m的最小值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 15:13:52
若x.y是实数,且m=x^2-4xy+6y^2-4x-4y,求m的最小值.
x){ѽBٌO{6uΓSrm+tM*** ]Jgrjy6 {l)Э_`gC0&@Fp`yQ&H 65(24BVkT652”֨5{si;.YdW@,v@0qyvs-dG(HzI

若x.y是实数,且m=x^2-4xy+6y^2-4x-4y,求m的最小值.
若x.y是实数,且m=x^2-4xy+6y^2-4x-4y,求m的最小值.

若x.y是实数,且m=x^2-4xy+6y^2-4x-4y,求m的最小值.
m=(x^2-4xy+4y^2)+2y^2-4x-4y
=(x-2y)^2-4(x-2y)+4-4+2y^2-12y
=(x-2y-2)^2+2y^2-12y+18-22
=(x-2y-2)^2+2(y-6)^2-22
平方大于等于0
所以m>=0+0-22=-22
所以最小值=-22

楼上是对的